Abstract 410P
Background
Cell-free DNA (cfDNA) fragmentation patterns hold immense potential for early cancer detection. However, the lack of systematic comparison among these patterns has impeded their broader research and practical implementation.
Methods
Here, we collected over 1,382 plasma cfDNA sequencing samples from diverse sources, covering eight cancer types including breast cancer, cholangiocarcinoma, colorectal cancer, gastric cancer, lung cancer, ovarian cancer, pancreatic cancer, and liver cancer. Considering that cfDNA within open chromatin regions is more susceptible to fragmentation, we leveraged ten fragmentation patterns within open chromatin regions as features and employed machine learning techniques to evaluate their performance. The considered fragmentation patterns included Windowed Protection Score, Preferred end coordinates, Coverage, Orientation-aware Cell-free Fragmentation, DNA Evaluation of Fragments for early Interception, Fragment Size Ratio, Fragment Size Distribution, End Motif preferences, Promoter Fragmentation Entropy, and Integrated Fragmentation Score.
Results
All fragmentation patterns demonstrated discernible classification capabilities, and the category of fragmentation patterns incorporating both fragment length and coverage information exhibited robust predictive capacities. The ensemble model integrating all these fragmentation patterns further improved performance in cancer detection and tissue-of-origin analysis. Biologically, crucial features of the model captured critical regulatory regions involved in cancer pathogenesis.
Conclusions
A comprehensive machine-learning-based evaluation of ten major cfDNA fragmentation patterns for early cancer detection was performed. Enhanced performance in cancer diagnosis and tissue-of-origin estimation was achieved, through integration of these fragmentation patterns in an ensemble model with biological interpretability.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
270P - Germline BRCA1/2 pathogenic variants in Japanese patients with prostate cancer are predictive factors for androgen receptor-axis-targeted therapy or chemotherapy for castration-resistant prostate cancer
Presenter: Shigekatsu Maekawa
Session: Poster Display
Resources:
Abstract
271P - Prostate cancer with histone modifier UTX mutations can benefit from olaparib
Presenter: NOBUHITO MURAMOTO
Session: Poster Display
Resources:
Abstract
272P - Comparison between MRI-targeted and standard biopsy for prostate cancer detection: A systematic review and meta-analysis
Presenter: Andree Kurniawan
Session: Poster Display
Resources:
Abstract
273P - The diagnostic performance of cognitive MRI-targeted biopsy in biopsy-naïve patients undergoing systematic 14-region 18-core biopsy: Do the three areas affect the results?
Presenter: Yuka Toyama
Session: Poster Display
Resources:
Abstract
274P - Index tumor location influencing early biochemical recurrence after radical prostatectomy in patients with negative surgical margins
Presenter: Jun Akatsuka
Session: Poster Display
Resources:
Abstract
275P - Prognosis of metastatic castration-resistant prostate cancer in response to chemotherapy and PSMA expression in circulating tumor cells
Presenter: Naoya Nagaya
Session: Poster Display
Resources:
Abstract
276P - Prognostic significance of p53 mutation in metastatic hormone-sensitive prostate cancer
Presenter: Lakshmi Kamala
Session: Poster Display
Resources:
Abstract
277P - Vasohibin-1 expression as a biomarker of aggressive growth in prostate ductal adenocarcinoma
Presenter: Murad Salomov
Session: Poster Display
Resources:
Abstract
278P - Full-coverage radiotherapy for prostate cancer patients with oligometastases
Presenter: Bichun Xu
Session: Poster Display
Resources:
Abstract
279P - Hypofractionated radiotherapy protocol implementation and early outcomes for prostate cancer patients: A single institution retrospective review
Presenter: Thu Nguyen
Session: Poster Display
Resources:
Abstract