Abstract 226P
Background
Urothelial carcinoma (UC) has a highly complex genomic landscape. With the spread of immunotherapy, accurate stratification strategies are needed. As cancer tissues are now frequently screened for specific sets of mutations, a large number of samples has become available for analysis. Classification of patients with similar mutation profiles may help identifying subgroups of patients outcomes. However, classification based on somatic mutations is challenging due to the sparseness and heterogeneity of the data.
Methods
A retrospective study was performed to identify the prognosis-related somatic mutations from 192 UC in The Cancer Genome Atlas (TCGA) database. Cox regression were performed to screen out prognostic genes.
Results
A total of 176 genes were related with immuno-survival. Then, a stepwise multivariate Cox regression analysis was performed, and 14 gene were selected to establish a predictive model. Compared with the wildtype group, the patients with mutated signature had unfavorable to prognosis (p<0.001). ROC curve analysis demonstrated the predictive ability for 1-, 3-, 5-, and 10-year OS, with areas under the curve (AUCs) of 0.7684, 0.667,0.619 and 0.647, respectively. In mutated signature cohorts, the five most frequently mutated genes were TP53 (50%), KMT2D (43%), LRP1B (33%), PER1 (33%), and RNF213 (33%). Dissimilarly, the five most frequently mutated genes were TP53 58%), ARID1A (29%), KMT2D (29%), RNF213 (27%), and KDM6A (26%) in wildtype cohorts, which may imply that different characteristic states have different molecular mechanisms.
Conclusions
These data underline the potential value of using somatic mutations to accurately stratify UC patients into clinically actionable subgroups. This model could reduce overtreatment in UC patients with mutations.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
452P - The relationship between BCG immunotherapy and oxidative stress parameters in patients with non-muscle invasive bladder cancer
Presenter: Mukul Singh
Session: Poster Display
Resources:
Abstract
453P - Palonosetron plus megestrol acetate verses palonosetron plus dexamethasone in preventing moderately emetogenic chemotherapy-induced nausea and vomiting: A randomized, multicenter, crossover, phase II trial
Presenter: Qiaoqi Li
Session: Poster Display
Resources:
Abstract
454P - A multicenter randomized open-label phase II study investigating optimal antiemetic therapy for patients with advanced/recurrent gastric cancer treated with trastuzumab deruxtecan (T-DXd): EN-hance study
Presenter: Akira Ooki
Session: Poster Display
Resources:
Abstract
455P - Assessing model-predicted neurokinin-1 (NK1) receptor occupancy (RO) of netupitant to support efficacy over an extended time period
Presenter: Matti Aapro
Session: Poster Display
Resources:
Abstract
456P - Oxycodone/naloxone in moderate-to-severe cancer pain: A phase III study in China
Presenter: Ping Lu
Session: Poster Display
Resources:
Abstract
457P - Anticoagulation for terminal cancer patients with cancer associated venous thromboembolism
Presenter: Sang Bo Oh
Session: Poster Display
Resources:
Abstract
458P - Association between TSPAN15 and SLC44A2 genetic polymorphisms and venous thromboembolism in cancer patients
Presenter: Alshimaa Al Hanafy
Session: Poster Display
Resources:
Abstract
459P - Association between national health screening program and undertreatment of dyslipidemia in cancer survivors: A cross-sectional study
Presenter: Sujeong Shin
Session: Poster Display
Resources:
Abstract
460P - Group to grow: A systematic review of group-based interventions for post-traumatic growth on cancer patients
Presenter: Dyta William
Session: Poster Display
Resources:
Abstract
461P - A randomized controlled trial of yoga in locally advanced non-small cell lung cancer patients receiving chemoradiotherapy
Presenter: Indranil Khan
Session: Poster Display
Resources:
Abstract