Abstract 144P
Background
Paclitaxel is commonly used as second-line therapy in advanced gastric cancer (AGC). The decision to proceed with second-line chemotherapy and select a chemotherapy regimen may be critical in vulnerable AGC patients after progression with first-line chemotherapy. However, there are no predictive biomarkers to identify patients with AGC who benefit from paclitaxel-based chemotherapy.
Methods
This study included 288 patients with AGC receiving second-line paclitaxel-based chemotherapy between 2017 and 2022 from K-MASTER project, a nationwide, government-funded precision medicine initiative. The data included clinicogenomic factors: clinical (age [young-onset vs. others], sex, histology [intestinal vs. diffuse type], prior trastuzumab use, duration of first-line chemotherapy, etc.) and genomic factors (pathogenic or likely pathogenic variants). The data were randomly divided into training and test sets (0.8:0.2). Three machine-learning methods, including random forest (RF), logistic regression (LR), and artificial neural network with genetic embedding (ANN) models, were used to develop the prediction model and were validated in the test sets.
Results
The median age was 64 years (range, 25-91) and 65.6% were male. A total of 288 patients were divided into training (n=230) and test sets (n=58). There were no significant differences in baseline characteristics between training and test sets. In the training set, the AUC for prediction of progression-free survival (PFS) with paclitaxel-based chemotherapy was 0.51, 0.73, and 0.75 in RF, LR, and ANN models, respectively. In the test set, the Kaplan-Meier curves of PFS were separated according to the three models: 2.8 vs. 1.5 months (P=0.07) in RF, 2.3 vs. 6.5 months (P=0.07) in LR, and 2.1 vs. 7.6 months (P=0.02) in ANN models.
Conclusions
These machine-learning models integrated clinical and genomic factors and can guide the selection of patients with AGC with a greater likelihood of a benefit from second-line paclitaxel-based chemotherapy. Further studies are necessary to validate and update these models in independent datasets in future.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
101P - The coexistence of TP53 gain-of-function mutation and hypermethylation as a poor prognostic factor in BRAF wild-type metastatic colorectal cancer
Presenter: Kota Ouchi
Session: Poster Display
Resources:
Abstract
102P - Enhancing colorectal cancer prevention in high-risk populations through faecal immunochemical test surveillance
Presenter: Li Xie
Session: Poster Display
Resources:
Abstract
103P - Anlotinib plus chemotherapy as first-line therapy for gastrointestinal tumor patients with unresectable liver metastasis: Updated results from a multi-cohort, multi-center phase II trial ALTER-G-001-cohort A
Presenter: Junwei Wu
Session: Poster Display
Resources:
Abstract
104P - The value of functional MR-imaging signature model for early prediction of chemotherapy response and its guidance for regimen adjustment to improve efficacy
Presenter: Wenhua Li
Session: Poster Display
Resources:
Abstract
105P - A single-arm, phase II, multicenter study of iparomlimab (QL1604) in patients (pts) with unresectable/metastatic deficient mismatch repair (dMMR)/microsatellite instability high (MSI-H) solid tumors
Presenter: Weijian Guo
Session: Poster Display
Resources:
Abstract
106P - Efficacy and safety of IBI351 (GFH925) monotherapy in metastatic colorectal cancer harboring KRASG12C mutation: Updated results from a pooled analysis of two phase I studies
Presenter: Ying Yuan
Session: Poster Display
Resources:
Abstract
107P - Tumor-stromal ratio in a new age fibroblast activated protein PET imaging as a biomarker for prediction of response to neoadjuvant chemoradiotherapy in carcinoma rectum
Presenter: swetha Suresh
Session: Poster Display
Resources:
Abstract
108P - Detection of HER2 overexpression in colorectal cancer: Comparison of a HANDLE classic NGS panel with standard IHC/FISH
Presenter: Lijuan Luan
Session: Poster Display
Resources:
Abstract
109P - Early onset metastatic colorectal cancer: Clinical-prognostic characteristics and correlation to molecular status
Presenter: Andrea Pretta
Session: Poster Display
Resources:
Abstract
110P - The correlation between multi-dimensional characteristics of circulating tumor cells (CTC) and treatment response in patients with initially unresectable metastatic colorectal cancer
Presenter: Yu Liu
Session: Poster Display
Resources:
Abstract