Abstract 14P
Background
Classification of molecular subtypes of breast cancer is widely used in clinical decision-making, leading to different treatment responses and clinical outcomes. We classified molecular subtypes using a novel deep learning algorithm in whole-slide histopathological images (WSIs) with invasive ductal carcinoma of the breast.
Methods
We obtained 1,094 breast cancer cases with available hematoxylin and eosin-stained WSIs from the TCGA database. We applied a new deep learning algorithm for artificial neural networks (ANNs) that is completely different from the back-propagation method developed in previous studies.
Results
Our model based on the ANN algorithm had an accuracy of 67.8% for all datasets (training and testing), and the area under the receiver operating characteristic curve was 0.819 when classifying molecular subtypes of breast cancer. In approximately 30% of cases, the molecular subtype did not reflect the unique histological subtype, which lowered the accuracy. The set revealed relatively high sensitivity (70.5%) and specificity (84.4%).
Conclusions
Our approach involving this ANN model has favorable diagnostic performance for molecular classification of breast cancer based on WSIs and could provide reliable results for planning treatment strategies.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
592P - Treatment patterns and outcomes in patients with advanced non-small cell lung cancer with MET exon 14 skipping alterations in China
Presenter: Hanxiao Chen
Session: Poster Display
Resources:
Abstract
593P - MET TKIs in Asian patients (pts) with MET exon 14 skipping NSCLC: A matching-adjusted indirect comparison (MAIC)
Presenter: E-e Ke
Session: Poster Display
Resources:
Abstract
594P - The treatment pattern and clinical outcome in NSCLC patients with MET alteration: A retrospective real-world analysis in China
Presenter: Yongfeng Yu
Session: Poster Display
Resources:
Abstract
595P - Durable efficacy of zenocutuzumab, a HER2 x HER3 bispecific antibody, in advanced NRG1 fusion-positive (NRG1+) non-small cell lung cancer (NSCLC)
Presenter: Koichi Goto
Session: Poster Display
Resources:
Abstract
596P - Repotrectinib in patients (pts) from Asia and China with ROS1 fusion-positive (ROS1+) non-small cell lung cancer (NSCLC): Results from the phase I/II TRIDENT-1 trial
Presenter: Ross Soo
Session: Poster Display
Resources:
Abstract
597TiP - A phase I/II study to evaluate the safety and anti-tumor activity of JIN-A02 in patients with EGFR TKI-refractory, EGFR-mutant advanced NSCLC
Presenter: Sun Min Lim
Session: Poster Display
Resources:
Abstract
598TiP - Exploration of aumolertinib in first-line treatment for advanced non-small cell lung cancer patients of performance status 3 with EGFR mutations (19del and L858R)
Presenter: Haiyi Deng
Session: Poster Display
Resources:
Abstract
599TiP - A prospective study of savolitinib plus docetaxel in pretreated EGFR/ALK/ROS1/METex14m-wildtype advanced NSCLC patients with MET overexpression (FirstMET)
Presenter: Shuting Zhan
Session: Poster Display
Resources:
Abstract
600TiP - Phase III study of telisotuzumab vedotin (Teliso-V) vs docetaxel in pretreated c-Met overexpressing EGFR wildtype (WT) non-squamous (NSQ) locally advanced/metastatic non-small cell lung cancer (a/mNSCLC)
Presenter: Junko Tanizaki
Session: Poster Display
Resources:
Abstract
601P - Pembrolizumab in patients of Chinese descent with microsatellite instability-high/mismatch repair deficient advanced solid tumors: KEYNOTE-158
Presenter: Xiaohua Wu
Session: Poster Display
Resources:
Abstract