Abstract 422P
Background
Tumor patients exhibit distinct immune microenvironments known as cold and hot tumors, with the drug resistance mechanisms of cold tumors remaining less understood. We endeavored to discern the pivotal cells that set apart hot and cold tumors so as to improve the efficacy of immunotherapy by interfering target cells and switching tumor subtypes.
Methods
Single-cell analysis was conducted on tumor tissues and peripheral blood samples collected before neoadjuvant treatment with immune checkpoint inhibitors (ICIs) at Sun Yat-sen Memorial Hospital, Sun Yat-sen University to identify key immune resistance cells. Multi-omics analysis utilizing pan-cancer immunotherapy cohorts was employed to validate the crucial role of CD8Teff in distinguishing hot and cold tumors. Deep learning was further utilized to analyze whole slide images of pathological sections, constructing an artificial intelligence (AI) model for identifying CD8Teff and seamless clinical implementation. Lastly, co-culture involving DC and T cells was employed to verify CD8Teff activation.
Results
CD8Teff was revealed to function as a crucial immunotherapeutic marker by directly determining the hot and cold tumor immune microenvironment. The ICIs sensitivity of hot tumor with high-CD8Teff attributable to activation of the tumor antigen presentation-related pathway and pronounced expression of cytotoxic cytokines CXCL13 and CXCL10. Conversely, the ICIs resistance of cold tumor with low-D8Teff due to escalated activation of angiogenesis and epithelial-mesenchymal transition pathway. The pathology AI model enabled quantitative prediction of CD8Teff and exhibited excellent performance with AUC values of 0.823 and 0.805 in training and validation cohorts. Augmenting CD52+DC expression with CXCL9 or CXCL10 straight activated CD8T transcription factors and elevated CD8Teff cell populations, thus inducing switching from cold to hot tumors.
Conclusions
The multi-omics study has discerned CD8Teff as a critical discriminator characterizing cold and hot tumors. Moreover, the pathological AI quantification of CD8Teff guides ICIs application. Intervening with CD52+DC-CD8T enables directly toggling from cold to hot tumors by activating CD8Teff.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
This study was supported by grants 2023YFE0204000 from National Key R&D Program of China, grants 82273204 and 81972471 from the National Natural Science Foundation of China, grant 2023A1515012412 and 2023A1515011214 GuangDong Basic and Applied Basic Research Foundation, grant 2023A03J0722, 202206010078 and 202201020574 from the Guangzhou Science and Technology Project, grant 2018007 from the Sun Yat-Sen University Clinical Research 5010 Program, grant SYS-C-201801 from the Sun Yat-Sen Clinical Research Cultivating Program, grant A2020558 from the Guangdong Medical Science and Technology Program, grant 7670020025 from Tencent Charity Foundation, grant YXQH202209 from the Sun Yat-sen Pilot Scientific Research Fund.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
426P - Characterization of a novel comprehensive genomic profiling test with better detection of heterozygous deletions and gene fusions
Presenter: ryouta kakuta
Session: Poster Display
Resources:
Abstract
427P - Real-world performance of a comprehensive next-generation sequencing (NGS) panel for patients (pts) with solid tumors from Asia and the Middle East (AME)
Presenter: Nitesh Rohatgi
Session: Poster Display
Resources:
Abstract
428P - What do women want to see in a personalized breast cancer risk report? A qualitative study of Asian women of two countries
Presenter: Faustina Audrey Agatha
Session: Poster Display
Resources:
Abstract
429P - Clinical utility and outcomes of liquid biopsy-based next generation sequencing in identification of actionable genomic mutations in solid malignancy: A single center retrospective study in the Philippines
Presenter: Omar Maaño
Session: Poster Display
Resources:
Abstract
436P - Chemotherapy-induced hand-foot syndrome, comparative efficacy and safety of pharmacological prophylaxis: Systematic review and network meta-analysis
Presenter: Anand Srinivasan
Session: Poster Display
Resources:
Abstract
437P - A randomized single blinded phase II trial comparing efficacy and quality of life of topical aloe vera gel plus urea cream versus urea cream alone for prevention of hand-foot syndrome in cancer patients receiving capecitabine
Presenter: Lucksika Wanichtanom
Session: Poster Display
Resources:
Abstract
438P - A novel treatment for immune checkpoint inhibitor-related myocarditis
Presenter: Takahiro Niimura
Session: Poster Display
Resources:
Abstract
439P - Randomized controlled trial evaluating efficacy of topical urea-based cream for capecitabine-associated hand-foot syndrome prevention
Presenter: Concord Wongkraisri
Session: Poster Display
Resources:
Abstract
440P - Real-world adverse events of targeted therapy reported by pharmacist in oncology clinic
Presenter: TIKUMPORN PORNWISETSIRIKUL
Session: Poster Display
Resources:
Abstract
441P - The prophylactic efficacy of telpegfilgrastim, a Y-shape branched pegylated G-CSF in patient with chemotherapy-induced neutropenia: A multicenter, randomized phase III study
Presenter: Xinshuai Wang
Session: Poster Display
Resources:
Abstract