Abstract 364P
Background
To develop artificial intelligence auto-segmentation model that generates consistent, high-quality lymph nodes contouring in head and neck cancer patients who received radiotherapy.
Methods
There were 60 computed tomography (CT) scans were retrospectively selected into training and another 60 CT scans were collected into cross-validation. All target delineations covered head and neck lymph node level I through V and based on the Radiation Therapy Oncology Group (RTOG) guideline. All targets were approved by radiation oncologists specializing in head and neck cancer. The volume of interest and all approved contours were used to train a 3D U-Net model. Different lymph node levels were trained independently. The trained model was used on cross-validation group. Auto-segmentations were revised by 2 radiation oncologists.
Results
The Dice Similarity Coefficients were 0.79 and 0.88 in trained group and cross-validation group. The volume changes ranged from -22.2 to 89.0 cm3. The center shift for x-direction, y-direction, and z-direction were -0.57 to 0.16 cm, -0.14 to 0.88 cm, and -0.19 to 0.38 cm, respectively.
Conclusions
We developed an artificial intelligence auto-segmentation model to autodelineate head and neck lymph nodes. Most results of auto-segmentations were acceptable after radiation oncologist review. This enables more efficient and consistent targeting of neck lymph nodes in radiation treatment planning.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The author.
Funding
Has not received any funding.
Disclosure
The author has declared no conflicts of interest.
Resources from the same session
571P - Dacomitinib in treatment-naïve EGFR-mutant NSCLC patients with multiple brain metastases: Initial efficacy and safety data from a phase II study
Presenter: Yongfeng Yu
Session: Poster Display
Resources:
Abstract
572P - Multivariable five-year survival prediction model for prognosing patients with EGFR-mutated NSCLC treated with EGFR-TKIs
Presenter: Qi-An Wang
Session: Poster Display
Resources:
Abstract
573P - LUMINATE-103: Real-world treatment patterns and outcomes of patients (pts) with epidermal growth factor receptor mutant (EGFR MU), non-squamous (NSQ) locally advanced/metastatic non-small cell lung cancer (a/mNSCLC): Pooled analysis of large US electronic health record (EHR) datasets
Presenter: Byoung Chul Cho
Session: Poster Display
Resources:
Abstract
574P - Efficacy and safety of dacomitinib in treatment-naïve patients with advanced NSCLC harboring uncommon EGFR mutations
Presenter: Lin Wu
Session: Poster Display
Resources:
Abstract
575P - Efficacy and safety of dacomitinib in treatment-naïve patients with advanced NSCLC and brain metastasis: A multicenter cohort study
Presenter: Puyuan Xing
Session: Poster Display
Resources:
Abstract
576P - Clonality of both EGFR and co-occurring TP53 mutations affect the treatment efficacy of the third-generation EGFR-TKIs in advanced-stage EGFR-mutant non-small cell lung cancer
Presenter: Wen Feng Fang
Session: Poster Display
Resources:
Abstract
577P - A study of the efficacy and safety of amivantamab in EGFR exon 20 insertion (E20I) mutations in NSCLC
Presenter: Daeho Choi
Session: Poster Display
Resources:
Abstract
578P - Tyrosine kinase inhibitor treatment of elderly patients with epidermal growth factor receptor mutated advanced non-small cell lung cancer: A multi-institute retrospective study
Presenter: Ling-Jen Hung
Session: Poster Display
Resources:
Abstract
579P - Real-world study of dacomitinib as first-line treatment for patients with EGFR-mutant non-small cell lung cancer
Presenter: Ji Eun Shin
Session: Poster Display
Resources:
Abstract
580P - Efficacy and safety of dacomitinib as first-line treatment for advanced non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor <italic>(EGFR)</italic> 21L858R mutation: A multicenter, ambispective, consecutive case-series study
Presenter: Shouzheng Wang
Session: Poster Display
Resources:
Abstract