Abstract 364P
Background
To develop artificial intelligence auto-segmentation model that generates consistent, high-quality lymph nodes contouring in head and neck cancer patients who received radiotherapy.
Methods
There were 60 computed tomography (CT) scans were retrospectively selected into training and another 60 CT scans were collected into cross-validation. All target delineations covered head and neck lymph node level I through V and based on the Radiation Therapy Oncology Group (RTOG) guideline. All targets were approved by radiation oncologists specializing in head and neck cancer. The volume of interest and all approved contours were used to train a 3D U-Net model. Different lymph node levels were trained independently. The trained model was used on cross-validation group. Auto-segmentations were revised by 2 radiation oncologists.
Results
The Dice Similarity Coefficients were 0.79 and 0.88 in trained group and cross-validation group. The volume changes ranged from -22.2 to 89.0 cm3. The center shift for x-direction, y-direction, and z-direction were -0.57 to 0.16 cm, -0.14 to 0.88 cm, and -0.19 to 0.38 cm, respectively.
Conclusions
We developed an artificial intelligence auto-segmentation model to autodelineate head and neck lymph nodes. Most results of auto-segmentations were acceptable after radiation oncologist review. This enables more efficient and consistent targeting of neck lymph nodes in radiation treatment planning.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The author.
Funding
Has not received any funding.
Disclosure
The author has declared no conflicts of interest.
Resources from the same session
519P - Final results and subgroup analysis of ORIENTAL: A phase IIIB study of durvalumab plus platinum-etoposide in first-line treatment of Chinese patients with extensive-stage small-cell lung cancer (ES-SCLC)
Presenter: Ying Cheng
Session: Poster Display
Resources:
Abstract
520P - Role of atezolizumab in controlling CNS progression in ES-SCLC
Presenter: Yoon Namgung
Session: Poster Display
Resources:
Abstract
521P - Camrelizumab combined with chemotherapy and apatinib as first-line therapy for extensive-stage small cell lung cancer: A phase II, single-arm, exploratory research
Presenter: Yanbin Zhao
Session: Poster Display
Resources:
Abstract
522P - Durvalumab plus etoposide and carboplatin for extensive-stage small cell lung cancer with mild idiopathic interstitial pneumonia
Presenter: Ichiro Nakachi
Session: Poster Display
Resources:
Abstract
523P - Camrelizumab plus apatinib as maintenance treatment in patients with extensive-stage small cell lung cancer who were responding or stable after standard first-line chemotherapy (CAMERA): Results from a single-arm, phase II trial
Presenter: Qi Wang
Session: Poster Display
Resources:
Abstract
524P - Treatment pattern and overall survival by lines of therapy among patients with advanced small cell lung cancer in Taiwan
Presenter: Kelly Huang
Session: Poster Display
Resources:
Abstract
525P - Development of diagnostic prediction score for malignant pleural effusion in lung cancer: MPE-Lung score
Presenter: Chaichana Chantharakhit
Session: Poster Display
Resources:
Abstract
526P - Burden and trends of tracheal, bronchus, and lung (TBL) cancer in Southeast Asia, East Asia, and Oceania from 1990-2019, and its projection of deaths to 2040: A benchmarking analysis
Presenter: Monika Chhayani
Session: Poster Display
Resources:
Abstract
527P - Efficacy of intraventricular chemotherapy with pemetrexed for leptomeningeal metastasis from lung adenocarcinoma: A retrospective study
Presenter: Fang Cun
Session: Poster Display
Resources:
Abstract
528P - Socioeconomic determinants of access to standard-of-care treatments in advanced and metastatic NSCLC in Hong Kong: A territory-wide study
Presenter: Ka Man Cheung
Session: Poster Display
Resources:
Abstract