Abstract 364P
Background
To develop artificial intelligence auto-segmentation model that generates consistent, high-quality lymph nodes contouring in head and neck cancer patients who received radiotherapy.
Methods
There were 60 computed tomography (CT) scans were retrospectively selected into training and another 60 CT scans were collected into cross-validation. All target delineations covered head and neck lymph node level I through V and based on the Radiation Therapy Oncology Group (RTOG) guideline. All targets were approved by radiation oncologists specializing in head and neck cancer. The volume of interest and all approved contours were used to train a 3D U-Net model. Different lymph node levels were trained independently. The trained model was used on cross-validation group. Auto-segmentations were revised by 2 radiation oncologists.
Results
The Dice Similarity Coefficients were 0.79 and 0.88 in trained group and cross-validation group. The volume changes ranged from -22.2 to 89.0 cm3. The center shift for x-direction, y-direction, and z-direction were -0.57 to 0.16 cm, -0.14 to 0.88 cm, and -0.19 to 0.38 cm, respectively.
Conclusions
We developed an artificial intelligence auto-segmentation model to autodelineate head and neck lymph nodes. Most results of auto-segmentations were acceptable after radiation oncologist review. This enables more efficient and consistent targeting of neck lymph nodes in radiation treatment planning.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The author.
Funding
Has not received any funding.
Disclosure
The author has declared no conflicts of interest.
Resources from the same session
415P - Initial experience in a real-world Asian cohort with a circulating tumor DNA (ctDNA) mutation-based multi-cancer early detection (MCED) assay
Presenter: Steven Tucker
Session: Poster Display
Resources:
Abstract
416P - Three-dimensional bioprinting model of ovarian cancer for identification of patient-specific therapy response
Presenter: Jiangang Zhang
Session: Poster Display
Resources:
Abstract
417P - Early experience in using plasma-only multi-omic minimal residual disease testing in early-stage colorectal cancer patients from Asia and the Middle East
Presenter: Shaheenah Dawood
Session: Poster Display
Resources:
Abstract
418P - Decoding the intricate cellular makeup of immune-related adverse events using single-cell and spatial analysis
Presenter: Dmitrii Shek
Session: Poster Display
Resources:
Abstract
420P - Combinatory genomic and transcriptomic sequencing of Chinese KRAS mutant non-small cell lung cancer revealed molecular and inflammatory heterogeneity in tumor microenvironment
Presenter: Xuchao Zhang
Session: Poster Display
Resources:
Abstract
421P - Comprehensive genomic profiling (CGP) unravels somatic BRCA (sBRCA) and homologous recombinant repair (HRR) gene alterations across multi-cancer spectrum
Presenter: Ramya Kodandapani
Session: Poster Display
Resources:
Abstract
422P - CD8Teff distinguished tumor immunotyping heterogeneity and enables precision immunotherapy
Presenter: luhui Mao
Session: Poster Display
Resources:
Abstract
423P - Insights into clinically actionable biomarkers in an Indian cancer cohort of 1000 patients using comprehensive genomic profiling (CGP)
Presenter: Mithua Ghosh
Session: Poster Display
Resources:
Abstract
424P - MD Anderson Cancer Center global precision oncology decision support (Glo-PODS) clinical trial genomic support: Pilot program at the Prince of Wales Hospital (Chinese University of Hong Kong - CUHK)
Presenter: Brigette Ma
Session: Poster Display
Resources:
Abstract
425P - Engineered <italic>Lactococcus lactis</italic> as a personalized cancer vaccine platform induces antitumour immunity via membrane-inserted peptide for neoantigens
Presenter: Meng Zhu
Session: Poster Display
Resources:
Abstract