Abstract 364P
Background
To develop artificial intelligence auto-segmentation model that generates consistent, high-quality lymph nodes contouring in head and neck cancer patients who received radiotherapy.
Methods
There were 60 computed tomography (CT) scans were retrospectively selected into training and another 60 CT scans were collected into cross-validation. All target delineations covered head and neck lymph node level I through V and based on the Radiation Therapy Oncology Group (RTOG) guideline. All targets were approved by radiation oncologists specializing in head and neck cancer. The volume of interest and all approved contours were used to train a 3D U-Net model. Different lymph node levels were trained independently. The trained model was used on cross-validation group. Auto-segmentations were revised by 2 radiation oncologists.
Results
The Dice Similarity Coefficients were 0.79 and 0.88 in trained group and cross-validation group. The volume changes ranged from -22.2 to 89.0 cm3. The center shift for x-direction, y-direction, and z-direction were -0.57 to 0.16 cm, -0.14 to 0.88 cm, and -0.19 to 0.38 cm, respectively.
Conclusions
We developed an artificial intelligence auto-segmentation model to autodelineate head and neck lymph nodes. Most results of auto-segmentations were acceptable after radiation oncologist review. This enables more efficient and consistent targeting of neck lymph nodes in radiation treatment planning.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The author.
Funding
Has not received any funding.
Disclosure
The author has declared no conflicts of interest.
Resources from the same session
352TiP - Randomized phase III study of daratumumab (D) versus bortezomib plus D as a maintenance therapy after D-MPB for elderly or non-elderly patients refusing transplant with untreated multiple myeloma (JCOG1911, B-DASH study)
Presenter: Tomotaka Suzuki
Session: Poster Display
Resources:
Abstract
362P - Efficacy and safety of MCLA-129, an anti-EGFR/c-MET bispecific antibody, in head and neck squamous cell cancer (HNSCC)
Presenter: Irene Braña
Session: Poster Display
Resources:
Abstract
363P - Effect of financial distress and mental well-being of patients with early vs advanced oral cancer on informal caregiver's quality of life: A prospective real-world data from public health sector hospital
Presenter: Abhinav Thaduri
Session: Poster Display
Resources:
Abstract
365P - Radiotherapy treatment outcomes and treatment compliance of nasopharyngeal cancer patients in Sabah: A retrospective analysis
Presenter: Anbarasan Anbazagan
Session: Poster Display
Resources:
Abstract
366P - Pre-treatment oral fungal microbiome and nasopharyngeal carcinoma prognosis: A population-based cohort study in southern China
Presenter: Yufeng Chen
Session: Poster Display
Resources:
Abstract
367P - Prevalence and association of sarcopenia with mortality in patients with head and neck cancer: A meta-analysis
Presenter: Claire Lim
Session: Poster Display
Resources:
Abstract
368P - Distinct gene expression profiling explored using nanostring tumor signalling 360 panel with validations in different clinical stages of oral submucous fibrosis patients: A first Indian study
Presenter: Yasasve Madhavan
Session: Poster Display
Resources:
Abstract
370P - Low-dose nivolumab with induction chemotherapy for inoperable HNSCC in 111 patients: Response rates, survival, and implications for LMICs
Presenter: Josh Thomas Georgy
Session: Poster Display
Resources:
Abstract
371P - The role of FDG-PET/CT in the assessment of response to radiation therapy in head and neck cancers: A systematic review and meta-analysis
Presenter: Felix Wijovi
Session: Poster Display
Resources:
Abstract
372P - Effectiveness of HAN-MI-RADS (head and neck molecular imaging-reporting and data system) criterion in head and neck squamous cell carcinoma post concurrent chemoradiotherapy
Presenter: Manoj Gupta
Session: Poster Display
Resources:
Abstract