Abstract 364P
Background
To develop artificial intelligence auto-segmentation model that generates consistent, high-quality lymph nodes contouring in head and neck cancer patients who received radiotherapy.
Methods
There were 60 computed tomography (CT) scans were retrospectively selected into training and another 60 CT scans were collected into cross-validation. All target delineations covered head and neck lymph node level I through V and based on the Radiation Therapy Oncology Group (RTOG) guideline. All targets were approved by radiation oncologists specializing in head and neck cancer. The volume of interest and all approved contours were used to train a 3D U-Net model. Different lymph node levels were trained independently. The trained model was used on cross-validation group. Auto-segmentations were revised by 2 radiation oncologists.
Results
The Dice Similarity Coefficients were 0.79 and 0.88 in trained group and cross-validation group. The volume changes ranged from -22.2 to 89.0 cm3. The center shift for x-direction, y-direction, and z-direction were -0.57 to 0.16 cm, -0.14 to 0.88 cm, and -0.19 to 0.38 cm, respectively.
Conclusions
We developed an artificial intelligence auto-segmentation model to autodelineate head and neck lymph nodes. Most results of auto-segmentations were acceptable after radiation oncologist review. This enables more efficient and consistent targeting of neck lymph nodes in radiation treatment planning.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The author.
Funding
Has not received any funding.
Disclosure
The author has declared no conflicts of interest.
Resources from the same session
297P - The utilization rate of radiotherapy and chemotherapy for cervical cancer in Indonesia: Optimal versus actual, how far the gap?
Presenter: Charity Kotambunan
Session: Poster Display
Resources:
Abstract
298P - Managing locally advanced cervical cancer: Insights from a tertiary care center and a 3-year follow-up on outcomes
Presenter: Ambedkar Yadala
Session: Poster Display
Resources:
Abstract
299P - Sexual dysfunction assessment in longterm survivors of carcinoma cervix using LENT SOMA scale
Presenter: Niharika Sethi
Session: Poster Display
Resources:
Abstract
300P - Assessing ovarian function in Vietnamese cervical cancer patients who underwent ovary transposition prior to pelvic radiation therapy
Presenter: Cuong Nguyen
Session: Poster Display
Resources:
Abstract
301P - Correlation between cervical cancer recurrence after radiation therapy and vaginal microbiome
Presenter: Xiaoxian Xu
Session: Poster Display
Resources:
Abstract
302P - Expression of ERCC4 gene and its correlation with clinical and pathological parameters in cervical cancer
Presenter: Himanshu Mishra
Session: Poster Display
Resources:
Abstract
303P - Prognostic value of body composition and systemic inflammatory markers in patients with locally advanced cervical cancer following chemoradiotherapy
Presenter: Hui Guo
Session: Poster Display
Resources:
Abstract
305P - A real-world multicenter cohort study of lenvatinib (LEN) plus pembrolizumab (PEM) in Japanese patients with endometrial cancer: Interim analysis of GOGO-EM4 study
Presenter: Yoshikazu Nagase
Session: Poster Display
Resources:
Abstract
306P - Adjuvant treatment and impact on relapse in stage IA uterine papillary serous and clear cell carcinomas: A single center retrospective study
Presenter: Sachin Khurana
Session: Poster Display
Resources:
Abstract
307P - Hormonal therapy vs combination chemotherapy in metastatic leiomyosarcomas: A systematic review
Presenter: Patricia Angel
Session: Poster Display
Resources:
Abstract