Abstract 623P
Background
Cancer ranks second globally in causes of death, accounting for 21% of all fatalities. However, many types of cancer can be cured if diagnosed and treated during early stages. We propose a liquid biopsy cancer analysis method that uses deep learning and a methylation-sensitive restriction enzyme digestion followed by sequencing method to detect and classify the most common cancers worldwide at early stages.
Methods
We developed a selective methylation sensitive restriction enzyme sequencing (MRE-Seq) method combined with a prediction model based on deep neural network (DNN) learning on data from 63,266 CpG sites to identify global hypomethylation patterns. The methylation dataset was made from 96 colon cancer samples, 95 lung cancer samples, 122 gastric cancer samples, 136 breast cancer samples, and 183 control samples. To eliminate batch bias, the ANOVA test was performed during feature selection. A DNN was adopted as a classifier, and 5-fold cross validation was performed to verify the classification performance.
Results
Across four cancer types, colorectal cancer had the highest predictive performance at 0.98, followed by breast cancer at 0.97, gastric cancer at 0.96, and lung cancer at 0.93. At 95% specificity, the sensitivity for detecting early-stage cancers varied widely, with lung cancer at 50% and breast cancer at 83%. Two different metrics were used to evaluate the model's performance. The cancer classifier (performance in detecting cancer) had a sensitivity of 95.1% and a specificity of 66.7%, indicating better performance in correctly identifying cancer samples. The cancer type classifier (performance in classifying the cancer type) utilized the precision metric to evaluate the accuracy of cancer classification. Notably, breast cancer achieved the highest precision at 95.8%, followed by lung cancer at 83.3%, gastric cancer at 79.1%, and colon cancer at 69.0%.
Conclusions
The proposed classification model based on the MRE-Seq method can reliably identify cancer and normal samples and differentiate between different cancer types using only methylation information obtained from patient's blood. This approach could be used in clinical practices to help medical experts diagnose cancer earlier and at the individual level.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
352TiP - Randomized phase III study of daratumumab (D) versus bortezomib plus D as a maintenance therapy after D-MPB for elderly or non-elderly patients refusing transplant with untreated multiple myeloma (JCOG1911, B-DASH study)
Presenter: Tomotaka Suzuki
Session: Poster Display
Resources:
Abstract
362P - Efficacy and safety of MCLA-129, an anti-EGFR/c-MET bispecific antibody, in head and neck squamous cell cancer (HNSCC)
Presenter: Irene Braña
Session: Poster Display
Resources:
Abstract
363P - Effect of financial distress and mental well-being of patients with early vs advanced oral cancer on informal caregiver's quality of life: A prospective real-world data from public health sector hospital
Presenter: Abhinav Thaduri
Session: Poster Display
Resources:
Abstract
364P - Artificial intelligence provides more accurately neck lymph nodes auto-segmentation in radiotherapy
Presenter: chiencheh Chen
Session: Poster Display
Resources:
Abstract
365P - Radiotherapy treatment outcomes and treatment compliance of nasopharyngeal cancer patients in Sabah: A retrospective analysis
Presenter: Anbarasan Anbazagan
Session: Poster Display
Resources:
Abstract
366P - Pre-treatment oral fungal microbiome and nasopharyngeal carcinoma prognosis: A population-based cohort study in southern China
Presenter: Yufeng Chen
Session: Poster Display
Resources:
Abstract
367P - Prevalence and association of sarcopenia with mortality in patients with head and neck cancer: A meta-analysis
Presenter: Claire Lim
Session: Poster Display
Resources:
Abstract
368P - Distinct gene expression profiling explored using nanostring tumor signalling 360 panel with validations in different clinical stages of oral submucous fibrosis patients: A first Indian study
Presenter: Yasasve Madhavan
Session: Poster Display
Resources:
Abstract
370P - Low-dose nivolumab with induction chemotherapy for inoperable HNSCC in 111 patients: Response rates, survival, and implications for LMICs
Presenter: Josh Thomas Georgy
Session: Poster Display
Resources:
Abstract
371P - The role of FDG-PET/CT in the assessment of response to radiation therapy in head and neck cancers: A systematic review and meta-analysis
Presenter: Felix Wijovi
Session: Poster Display
Resources:
Abstract