Abstract 623P
Background
Cancer ranks second globally in causes of death, accounting for 21% of all fatalities. However, many types of cancer can be cured if diagnosed and treated during early stages. We propose a liquid biopsy cancer analysis method that uses deep learning and a methylation-sensitive restriction enzyme digestion followed by sequencing method to detect and classify the most common cancers worldwide at early stages.
Methods
We developed a selective methylation sensitive restriction enzyme sequencing (MRE-Seq) method combined with a prediction model based on deep neural network (DNN) learning on data from 63,266 CpG sites to identify global hypomethylation patterns. The methylation dataset was made from 96 colon cancer samples, 95 lung cancer samples, 122 gastric cancer samples, 136 breast cancer samples, and 183 control samples. To eliminate batch bias, the ANOVA test was performed during feature selection. A DNN was adopted as a classifier, and 5-fold cross validation was performed to verify the classification performance.
Results
Across four cancer types, colorectal cancer had the highest predictive performance at 0.98, followed by breast cancer at 0.97, gastric cancer at 0.96, and lung cancer at 0.93. At 95% specificity, the sensitivity for detecting early-stage cancers varied widely, with lung cancer at 50% and breast cancer at 83%. Two different metrics were used to evaluate the model's performance. The cancer classifier (performance in detecting cancer) had a sensitivity of 95.1% and a specificity of 66.7%, indicating better performance in correctly identifying cancer samples. The cancer type classifier (performance in classifying the cancer type) utilized the precision metric to evaluate the accuracy of cancer classification. Notably, breast cancer achieved the highest precision at 95.8%, followed by lung cancer at 83.3%, gastric cancer at 79.1%, and colon cancer at 69.0%.
Conclusions
The proposed classification model based on the MRE-Seq method can reliably identify cancer and normal samples and differentiate between different cancer types using only methylation information obtained from patient's blood. This approach could be used in clinical practices to help medical experts diagnose cancer earlier and at the individual level.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
320P - Treatment patterns and outcomes in Indian patients with advanced ovarian cancer: A single center experience
Presenter: Pushpendra Hirapara
Session: Poster Display
Resources:
Abstract
321P - Epidemiology and survival analysis of epithelial ovarian cancer: Results from comprehensive care center in north India
Presenter: Amit Badola
Session: Poster Display
Resources:
Abstract
322P - Evaluation of chemotherapy response score as a prognostic factor in advanced epithelial ovarian cancer: A prospective single centre study
Presenter: Upasana Palo
Session: Poster Display
Resources:
Abstract
323P - Platelet-to-lymphocyte ratio, neutrophil-to-lymphocyte ratio, and lymphocyte-to-monocyte ratio as prognostic biomarkers in ovarian cancer among the Asian population: A meta-analysis
Presenter: Wikania Wira Wiguna I Gede
Session: Poster Display
Resources:
Abstract
324P - All-<italic>trans</italic> retinoic acid sensitizes ovarian cancer to niraparib by inhibiting ALDH1A1 activity
Presenter: Bingjie Mei
Session: Poster Display
Resources:
Abstract
325TiP - A phase III randomized controlled trial in primary stage three and four ovarian cancer after interval cytoreductive surgery (FOCUS/KOV-HIPEC-04)
Presenter: Myong Cheol Lim
Session: Poster Display
Resources:
Abstract
327TiP - A single arm phase II study of single agent pemetrexed in platinum resistant/refractory epithelial ovarian or primary peritoneal cancer
Presenter: Swasthik Parampalli
Session: Poster Display
Resources:
Abstract
337P - Demographic patterns and survival outcomes of patients with T and NK-cell lymphoma at the National Cancer Centre Singapore
Presenter: Mohamed Haniffa Bin Hasan Mohamed
Session: Poster Display
Resources:
Abstract
338P - Multicenter real-world study of advanced-stage non-nasal type NK/T cell lymphoma (NKTCL): Clinical features, treatment and prognosis
Presenter: Yuce Wei
Session: Poster Display
Resources:
Abstract
339P - A comparison of survival of patients with relapsed or refractory diffuse large B cell lymphoma undergoing allogeneic stem cell transplantation or receiving CAR-T therapy
Presenter: Kenta Hayashino
Session: Poster Display
Resources:
Abstract