Abstract 620P
Background
Cancer constitutes a major burden to global health and the critical role of early diagnosis for cancer management is self-evident. Even though various miRNA-based signatures have been developed, their clinical utilization is limited due to various reasons. In this article, we innovatively developed a signature based on pairwise expression of miRNAs (miRPs) for pan-cancer diagnosis using machine learning approach.
Methods
miRNA spectrum of 15832 patients with 13 different cancers from 10 cohorts were analyzed. 15148 patients were divided into training, validation, and test sets with a ratio of 7:2:1, while 648 patients were utilized as external test. Pairwise comparison was performed to generate miRP score, defined by the comparison between two miRNAs, in training set. Five different machine-learning (ML) algorithms (XGBoost, SVM, RandomForest, LASSO, and Logistic) were adopted for signature construction. The best ML algorithm and the optimal number of miRPs included were identified using AUC and youden index in validation. Performance of the ideal model was evaluated in test and external set based on AUC, Youden index, positive predictive value (PPV), negative predictive value (NPV), sensitivity, specificity, and accuracy. The AUC of entire cohorts was compared to previously published 25 signatures.
Results
The Random Forest approach including 31 miRPs (31-miRP) outperformed others and was retained for further evaluation. The AUC of 31-miRP ranges 0.980-1.000 in different set. Remarkably, 31-miRP exhibited advantages in differentiating different cancers from normal tissues. Moreover, 31-miRP demonstrate superiorities in detecting early-stage cancers, with AUC ranging from 0.961-0.998. Compared to previously published 25 different signatures, 31-miRP also demonstrated clear advantages. Remarkably, 31-miRP also exhibited promising capabilities in differentiating cancers from corresponding benign lesions.
Conclusions
The 31-miRP exhibited outstanding diagnostic performance, characterized by high accuracy and sensitivity, thereby holding potential as a reliable tool for cancer diagnosis at early stage. Nevertheless, its effectiveness still warrants further investigation in real-world setting in future.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
CAMS Innovation Fund for Medical Sciences (No.2021-I2M-1-050); National Natural Science Foundation for Young Scientists of China (No. 82203025).
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
441P - The prophylactic efficacy of telpegfilgrastim, a Y-shape branched pegylated G-CSF in patient with chemotherapy-induced neutropenia: A multicenter, randomized phase III study
Presenter: Xinshuai Wang
Session: Poster Display
Resources:
Abstract
442P - Negative impact on bone homeostasis in postmenopausal women with non-metastatic breast cancer during cytotoxic chemotherapy
Presenter: Yadav Nisha
Session: Poster Display
Resources:
Abstract
443P - Efficacy of vitamin D supplementation in overall survival of cancer patients: Systematic review and meta-analysis
Presenter: Visakha Irawan
Session: Poster Display
Resources:
Abstract
444P - Commencing a nurse led symptom and urgent review clinic (SURC) in a Victorian regional cancer centre
Presenter: Sue Bartlett
Session: Poster Display
Resources:
Abstract
445P - Self-reported symptom burden, quality of life and unmet need of symptom management in nasopharyngeal cancer survivors: A cross-sectional survey
Presenter: Jerry Ching
Session: Poster Display
Resources:
Abstract
446P - A single center experience of anamorelin in patients with non-small cell lung cancer
Presenter: Takanori Ito
Session: Poster Display
Resources:
Abstract
447P - Quality of life in patients with EGFR-mutated lung cancer receiving gefitinib vs gefitinib plus pemetrexed and carboplatin chemotherapy
Presenter: Nandini Menon
Session: Poster Display
Resources:
Abstract
448P - Association of clinicopathological characteristics and pro-inflammatory markers with reduced relative dose intensity in breast cancer chemotherapy
Presenter: Susanna Hutajulu
Session: Poster Display
Resources:
Abstract
449P - Psychometric validation of the MD Anderson symptom inventory head&neck module: Chinese version in nasopharyngeal cancer survivors
Presenter: Victor Tam
Session: Poster Display
Resources:
Abstract
450P - Retrospective study of anamorelin therapy for unresectable or recurrent pancreatic cancer with cancer cachexia
Presenter: Mao Okada
Session: Poster Display
Resources:
Abstract