Abstract 620P
Background
Cancer constitutes a major burden to global health and the critical role of early diagnosis for cancer management is self-evident. Even though various miRNA-based signatures have been developed, their clinical utilization is limited due to various reasons. In this article, we innovatively developed a signature based on pairwise expression of miRNAs (miRPs) for pan-cancer diagnosis using machine learning approach.
Methods
miRNA spectrum of 15832 patients with 13 different cancers from 10 cohorts were analyzed. 15148 patients were divided into training, validation, and test sets with a ratio of 7:2:1, while 648 patients were utilized as external test. Pairwise comparison was performed to generate miRP score, defined by the comparison between two miRNAs, in training set. Five different machine-learning (ML) algorithms (XGBoost, SVM, RandomForest, LASSO, and Logistic) were adopted for signature construction. The best ML algorithm and the optimal number of miRPs included were identified using AUC and youden index in validation. Performance of the ideal model was evaluated in test and external set based on AUC, Youden index, positive predictive value (PPV), negative predictive value (NPV), sensitivity, specificity, and accuracy. The AUC of entire cohorts was compared to previously published 25 signatures.
Results
The Random Forest approach including 31 miRPs (31-miRP) outperformed others and was retained for further evaluation. The AUC of 31-miRP ranges 0.980-1.000 in different set. Remarkably, 31-miRP exhibited advantages in differentiating different cancers from normal tissues. Moreover, 31-miRP demonstrate superiorities in detecting early-stage cancers, with AUC ranging from 0.961-0.998. Compared to previously published 25 different signatures, 31-miRP also demonstrated clear advantages. Remarkably, 31-miRP also exhibited promising capabilities in differentiating cancers from corresponding benign lesions.
Conclusions
The 31-miRP exhibited outstanding diagnostic performance, characterized by high accuracy and sensitivity, thereby holding potential as a reliable tool for cancer diagnosis at early stage. Nevertheless, its effectiveness still warrants further investigation in real-world setting in future.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
CAMS Innovation Fund for Medical Sciences (No.2021-I2M-1-050); National Natural Science Foundation for Young Scientists of China (No. 82203025).
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
414P - Landscape of ERBB2 mutations in advanced cancers (AC) using circulating tumor DNA (ctDNA) next-generation sequencing (NGS) in Asia and Middle East (AME)
Presenter: Byoung Chul Cho
Session: Poster Display
Resources:
Abstract
415P - Initial experience in a real-world Asian cohort with a circulating tumor DNA (ctDNA) mutation-based multi-cancer early detection (MCED) assay
Presenter: Steven Tucker
Session: Poster Display
Resources:
Abstract
416P - Three-dimensional bioprinting model of ovarian cancer for identification of patient-specific therapy response
Presenter: Jiangang Zhang
Session: Poster Display
Resources:
Abstract
417P - Early experience in using plasma-only multi-omic minimal residual disease testing in early-stage colorectal cancer patients from Asia and the Middle East
Presenter: Shaheenah Dawood
Session: Poster Display
Resources:
Abstract
418P - Decoding the intricate cellular makeup of immune-related adverse events using single-cell and spatial analysis
Presenter: Dmitrii Shek
Session: Poster Display
Resources:
Abstract
420P - Combinatory genomic and transcriptomic sequencing of Chinese KRAS mutant non-small cell lung cancer revealed molecular and inflammatory heterogeneity in tumor microenvironment
Presenter: Xuchao Zhang
Session: Poster Display
Resources:
Abstract
421P - Comprehensive genomic profiling (CGP) unravels somatic BRCA (sBRCA) and homologous recombinant repair (HRR) gene alterations across multi-cancer spectrum
Presenter: Ramya Kodandapani
Session: Poster Display
Resources:
Abstract
422P - CD8Teff distinguished tumor immunotyping heterogeneity and enables precision immunotherapy
Presenter: luhui Mao
Session: Poster Display
Resources:
Abstract
423P - Insights into clinically actionable biomarkers in an Indian cancer cohort of 1000 patients using comprehensive genomic profiling (CGP)
Presenter: Mithua Ghosh
Session: Poster Display
Resources:
Abstract
424P - MD Anderson Cancer Center global precision oncology decision support (Glo-PODS) clinical trial genomic support: Pilot program at the Prince of Wales Hospital (Chinese University of Hong Kong - CUHK)
Presenter: Brigette Ma
Session: Poster Display
Resources:
Abstract