Abstract 620P
Background
Cancer constitutes a major burden to global health and the critical role of early diagnosis for cancer management is self-evident. Even though various miRNA-based signatures have been developed, their clinical utilization is limited due to various reasons. In this article, we innovatively developed a signature based on pairwise expression of miRNAs (miRPs) for pan-cancer diagnosis using machine learning approach.
Methods
miRNA spectrum of 15832 patients with 13 different cancers from 10 cohorts were analyzed. 15148 patients were divided into training, validation, and test sets with a ratio of 7:2:1, while 648 patients were utilized as external test. Pairwise comparison was performed to generate miRP score, defined by the comparison between two miRNAs, in training set. Five different machine-learning (ML) algorithms (XGBoost, SVM, RandomForest, LASSO, and Logistic) were adopted for signature construction. The best ML algorithm and the optimal number of miRPs included were identified using AUC and youden index in validation. Performance of the ideal model was evaluated in test and external set based on AUC, Youden index, positive predictive value (PPV), negative predictive value (NPV), sensitivity, specificity, and accuracy. The AUC of entire cohorts was compared to previously published 25 signatures.
Results
The Random Forest approach including 31 miRPs (31-miRP) outperformed others and was retained for further evaluation. The AUC of 31-miRP ranges 0.980-1.000 in different set. Remarkably, 31-miRP exhibited advantages in differentiating different cancers from normal tissues. Moreover, 31-miRP demonstrate superiorities in detecting early-stage cancers, with AUC ranging from 0.961-0.998. Compared to previously published 25 different signatures, 31-miRP also demonstrated clear advantages. Remarkably, 31-miRP also exhibited promising capabilities in differentiating cancers from corresponding benign lesions.
Conclusions
The 31-miRP exhibited outstanding diagnostic performance, characterized by high accuracy and sensitivity, thereby holding potential as a reliable tool for cancer diagnosis at early stage. Nevertheless, its effectiveness still warrants further investigation in real-world setting in future.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
CAMS Innovation Fund for Medical Sciences (No.2021-I2M-1-050); National Natural Science Foundation for Young Scientists of China (No. 82203025).
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
62P - Combination of chemotherapy with endocrinal therapy as upfront treatment of metastatic breast cancer in hormone receptor- positive, HER2 -negative disease: A phase II randomised clinical trial
Presenter: Mariam Saleh
Session: Poster Display
Resources:
Abstract
63P - Efficacy and safety of eribulin plus carboplatin combination for HER2-negative metastatic breast cancer
Presenter: Mengqian Ni
Session: Poster Display
Resources:
Abstract
64P - Unmet needs following metastatic breast cancer in a middle-income Asian country
Presenter: Nirmala Bhoo-Pathy
Session: Poster Display
Resources:
Abstract
66P - Utidelone-based therapy in metastatic solid tumors after failure of standard therapies: A prospective, multicenter, single-arm trial
Presenter: Jianjun Zhang
Session: Poster Display
Resources:
Abstract
67P - Efficacy and safety of trastuzumab biosimilar in HER2+ve metastatic breast cancer: A multicenter phase III study
Presenter: krishna Mohan
Session: Poster Display
Resources:
Abstract
68P - Neratinib in combination with fulvestrant and or palbociclib can overcome endocrine resistance in HER2-low/ ER+ breast cancer
Presenter: Maryam Arshad
Session: Poster Display
Resources:
Abstract
69P - A multicenter, retrospective, real-world study of inetetamab combined with pyrotinib and vinorelbine as treatment for HER2-positive metastatic breast cancer
Presenter: Nan Jin
Session: Poster Display
Resources:
Abstract
70P - Overall survival of eribulin, trastuzumab, and pertuzumab as first-line therapy for patients with HER2-positive metastatic breast cancer: A phase II, single-arm clinical trial
Presenter: Kenichi Inoue
Session: Poster Display
Resources:
Abstract
71P - Efficacy and safety of disitamab vedotin after trastuzumab for HER2 -positive breast cancer: A real-world data of retrospective study
Presenter: Chao Li
Session: Poster Display
Resources:
Abstract
72P - Real-world data on the efficacy of T-DM1 biosimilar for the treatment of HER2-positive metastatic breast cancer patients: Outcomes from a single center retrospective study in India
Presenter: Kaushal Patel
Session: Poster Display
Resources:
Abstract