Abstract 310P
Background
This study investigated site-specific differences in clinical factors for recurrence in patients who were newly diagnosed and treated for endometrial cancer. Several machine learning algorithms were adapted to predict the recurrence of patients.
Methods
Electronic medical records’ data were retrieved from January 2006 to December 2018 for patients who were diagnosed with endometrial cancer at the XXX in Korea. Recurrence sites were classified as local, regional, or distant. We employed various machine learning algorithms, including logistic regression models (LR), random forest (RF), support vector machine (SVM) and artificial neural network (ANN), and assessed their prediction performances by cross-validation. Since our problem is an imbalanced multi-classification problem, the average score of AUC (area under curve) for each class obtained from one-vs-rest strategy was used for evaluating each machine learning algorithm.
Results
The data of 611 patients were selected for analysis; there were 20, 12, and 25 local, regional, and distant recurrence, respectively, and 554 patients had no recurrence. Random forest showed the best performance (0.8587) in prediction accuracy. Other algorithms followed with 0.7790 (LR), 0.7398 (ANN) and SVM (0.7119). The most important variables in Random Forest were invasion depth, age and size, in order.
Conclusions
We identified different risk factors specific for each type of recurrence site. Using these risk factors, we suggest that individually tailored adjuvant treatments be introduced for patients.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
561P - Mechanisms of osimertinib resistance using circulating tumor DNA analyses for EGFR-mutated non-small cell lung cancer, results from ELUCIDATOR: A prospective observational multicenter study
Presenter: Daijiro Harada
Session: Poster Display
Resources:
Abstract
562P - First-line (1L) osimertinib (osi) ± platinum-pemetrexed in patients (pts) with EGFRm advanced NSCLC: FLAURA2 China cohort
Presenter: Yan Yu
Session: Poster Display
Resources:
Abstract
563P - Real-world effectiveness and safety of first-line osimertinib for EGFR-mutated advanced NSCLC in China (FLOURISH study)
Presenter: Jianya Zhou
Session: Poster Display
Resources:
Abstract
564P - Co-occurring EGFR p.E709X mutation affects the treatment response to the third-generation EGFR-TKIs in EGFR p.G719X-mutant patients with advanced NSCLC
Presenter: Wen Feng Fang
Session: Poster Display
Resources:
Abstract
565P - Genome-guided targeted therapy combination improves survival in patients with advanced EGFR mutation positive NSCLC failing osimertinib
Presenter: Molly Li
Session: Poster Display
Resources:
Abstract
566P - Safety of tepotinib + osimertinib in EGFR-mutant NSCLC with MET amplification after first-line osimertinib
Presenter: Chong Kin Liam
Session: Poster Display
Resources:
Abstract
567P - Furmonertinib in combination with bevacizumab and intrathecal chemotherapy as later-line re-challenge treatment in EGFR –mutated NSCLC patients with leptomeningeal metastasis after third-generation EGFR-TKIs treatment failure
Presenter: Fang Cun
Session: Poster Display
Resources:
Abstract
568P - First-line (1L) osimertinib + platinum-pemetrexed in EGFR-mutated (EGFRm) advanced NSCLC: Updated FLAURA2 safety run-in (SRI) results
Presenter: David Planchard
Session: Poster Display
Resources:
Abstract
569P - Whole-transcriptome sequencing of transformed small-cell lung cancer from EGFR-mutated lung adenocarcinoma reveals LUAD–like and SCLC–like subsets
Presenter: Chan-Yuan Zhang
Session: Poster Display
Resources:
Abstract
570P - First-line osimertinib for patients with advanced NSCLC harboring EGFR mutations: A real-world study
Presenter: Wenxiang Ji
Session: Poster Display
Resources:
Abstract