Abstract 310P
Background
This study investigated site-specific differences in clinical factors for recurrence in patients who were newly diagnosed and treated for endometrial cancer. Several machine learning algorithms were adapted to predict the recurrence of patients.
Methods
Electronic medical records’ data were retrieved from January 2006 to December 2018 for patients who were diagnosed with endometrial cancer at the XXX in Korea. Recurrence sites were classified as local, regional, or distant. We employed various machine learning algorithms, including logistic regression models (LR), random forest (RF), support vector machine (SVM) and artificial neural network (ANN), and assessed their prediction performances by cross-validation. Since our problem is an imbalanced multi-classification problem, the average score of AUC (area under curve) for each class obtained from one-vs-rest strategy was used for evaluating each machine learning algorithm.
Results
The data of 611 patients were selected for analysis; there were 20, 12, and 25 local, regional, and distant recurrence, respectively, and 554 patients had no recurrence. Random forest showed the best performance (0.8587) in prediction accuracy. Other algorithms followed with 0.7790 (LR), 0.7398 (ANN) and SVM (0.7119). The most important variables in Random Forest were invasion depth, age and size, in order.
Conclusions
We identified different risk factors specific for each type of recurrence site. Using these risk factors, we suggest that individually tailored adjuvant treatments be introduced for patients.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
519P - Final results and subgroup analysis of ORIENTAL: A phase IIIB study of durvalumab plus platinum-etoposide in first-line treatment of Chinese patients with extensive-stage small-cell lung cancer (ES-SCLC)
Presenter: Ying Cheng
Session: Poster Display
Resources:
Abstract
520P - Role of atezolizumab in controlling CNS progression in ES-SCLC
Presenter: Yoon Namgung
Session: Poster Display
Resources:
Abstract
521P - Camrelizumab combined with chemotherapy and apatinib as first-line therapy for extensive-stage small cell lung cancer: A phase II, single-arm, exploratory research
Presenter: Yanbin Zhao
Session: Poster Display
Resources:
Abstract
522P - Durvalumab plus etoposide and carboplatin for extensive-stage small cell lung cancer with mild idiopathic interstitial pneumonia
Presenter: Ichiro Nakachi
Session: Poster Display
Resources:
Abstract
523P - Camrelizumab plus apatinib as maintenance treatment in patients with extensive-stage small cell lung cancer who were responding or stable after standard first-line chemotherapy (CAMERA): Results from a single-arm, phase II trial
Presenter: Qi Wang
Session: Poster Display
Resources:
Abstract
524P - Treatment pattern and overall survival by lines of therapy among patients with advanced small cell lung cancer in Taiwan
Presenter: Kelly Huang
Session: Poster Display
Resources:
Abstract
525P - Development of diagnostic prediction score for malignant pleural effusion in lung cancer: MPE-Lung score
Presenter: Chaichana Chantharakhit
Session: Poster Display
Resources:
Abstract
526P - Burden and trends of tracheal, bronchus, and lung (TBL) cancer in Southeast Asia, East Asia, and Oceania from 1990-2019, and its projection of deaths to 2040: A benchmarking analysis
Presenter: Monika Chhayani
Session: Poster Display
Resources:
Abstract
527P - Efficacy of intraventricular chemotherapy with pemetrexed for leptomeningeal metastasis from lung adenocarcinoma: A retrospective study
Presenter: Fang Cun
Session: Poster Display
Resources:
Abstract
528P - Socioeconomic determinants of access to standard-of-care treatments in advanced and metastatic NSCLC in Hong Kong: A territory-wide study
Presenter: Ka Man Cheung
Session: Poster Display
Resources:
Abstract