Abstract 310P
Background
This study investigated site-specific differences in clinical factors for recurrence in patients who were newly diagnosed and treated for endometrial cancer. Several machine learning algorithms were adapted to predict the recurrence of patients.
Methods
Electronic medical records’ data were retrieved from January 2006 to December 2018 for patients who were diagnosed with endometrial cancer at the XXX in Korea. Recurrence sites were classified as local, regional, or distant. We employed various machine learning algorithms, including logistic regression models (LR), random forest (RF), support vector machine (SVM) and artificial neural network (ANN), and assessed their prediction performances by cross-validation. Since our problem is an imbalanced multi-classification problem, the average score of AUC (area under curve) for each class obtained from one-vs-rest strategy was used for evaluating each machine learning algorithm.
Results
The data of 611 patients were selected for analysis; there were 20, 12, and 25 local, regional, and distant recurrence, respectively, and 554 patients had no recurrence. Random forest showed the best performance (0.8587) in prediction accuracy. Other algorithms followed with 0.7790 (LR), 0.7398 (ANN) and SVM (0.7119). The most important variables in Random Forest were invasion depth, age and size, in order.
Conclusions
We identified different risk factors specific for each type of recurrence site. Using these risk factors, we suggest that individually tailored adjuvant treatments be introduced for patients.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
442P - Negative impact on bone homeostasis in postmenopausal women with non-metastatic breast cancer during cytotoxic chemotherapy
Presenter: Yadav Nisha
Session: Poster Display
Resources:
Abstract
443P - Efficacy of vitamin D supplementation in overall survival of cancer patients: Systematic review and meta-analysis
Presenter: Visakha Irawan
Session: Poster Display
Resources:
Abstract
444P - Commencing a nurse led symptom and urgent review clinic (SURC) in a Victorian regional cancer centre
Presenter: Sue Bartlett
Session: Poster Display
Resources:
Abstract
445P - Self-reported symptom burden, quality of life and unmet need of symptom management in nasopharyngeal cancer survivors: A cross-sectional survey
Presenter: Jerry Ching
Session: Poster Display
Resources:
Abstract
446P - A single center experience of anamorelin in patients with non-small cell lung cancer
Presenter: Takanori Ito
Session: Poster Display
Resources:
Abstract
447P - Quality of life in patients with EGFR-mutated lung cancer receiving gefitinib vs gefitinib plus pemetrexed and carboplatin chemotherapy
Presenter: Nandini Menon
Session: Poster Display
Resources:
Abstract
448P - Association of clinicopathological characteristics and pro-inflammatory markers with reduced relative dose intensity in breast cancer chemotherapy
Presenter: Susanna Hutajulu
Session: Poster Display
Resources:
Abstract
449P - Psychometric validation of the MD Anderson symptom inventory head&neck module: Chinese version in nasopharyngeal cancer survivors
Presenter: Victor Tam
Session: Poster Display
Resources:
Abstract
450P - Retrospective study of anamorelin therapy for unresectable or recurrent pancreatic cancer with cancer cachexia
Presenter: Mao Okada
Session: Poster Display
Resources:
Abstract
451P - The real-world efficacy and safety of anamorelin hydrochloride for Japanese unresectable non-small cell lung cancer patients with cachexia
Presenter: Daisuke Arai
Session: Poster Display
Resources:
Abstract