Abstract 310P
Background
This study investigated site-specific differences in clinical factors for recurrence in patients who were newly diagnosed and treated for endometrial cancer. Several machine learning algorithms were adapted to predict the recurrence of patients.
Methods
Electronic medical records’ data were retrieved from January 2006 to December 2018 for patients who were diagnosed with endometrial cancer at the XXX in Korea. Recurrence sites were classified as local, regional, or distant. We employed various machine learning algorithms, including logistic regression models (LR), random forest (RF), support vector machine (SVM) and artificial neural network (ANN), and assessed their prediction performances by cross-validation. Since our problem is an imbalanced multi-classification problem, the average score of AUC (area under curve) for each class obtained from one-vs-rest strategy was used for evaluating each machine learning algorithm.
Results
The data of 611 patients were selected for analysis; there were 20, 12, and 25 local, regional, and distant recurrence, respectively, and 554 patients had no recurrence. Random forest showed the best performance (0.8587) in prediction accuracy. Other algorithms followed with 0.7790 (LR), 0.7398 (ANN) and SVM (0.7119). The most important variables in Random Forest were invasion depth, age and size, in order.
Conclusions
We identified different risk factors specific for each type of recurrence site. Using these risk factors, we suggest that individually tailored adjuvant treatments be introduced for patients.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
397P - Comparison between Y-site co-infusion versus standard dexamethasone for preventing hypersensitivity reactions from oxaliplatin administration: A randomized controlled trial
Presenter: jarearnjit Phavirunsiri
Session: Poster Display
Resources:
Abstract
398P - Evaluation of the effectiveness of denosumab therapy giant cell tumor of the pelvis
Presenter: Abbos Nurjabov
Session: Poster Display
Resources:
Abstract
399P - Long-term outcomes of patients with gastric cancer who received the best supportive care without any anticancer treatment
Presenter: Yohei Arihara
Session: Poster Display
Resources:
Abstract
401TiP - Oral opioid vs intravenous patient-controlled analgesia (PCA) with hydromorphone bolus-only or continuous infusion to maintain analgesia for severe cancer pain: A randomized phase III trial
Presenter: Cheng Huang
Session: Poster Display
Resources:
Abstract
407P - K-TrackTM: A streamlined personalized assay to detect molecular residual disease in solid tumors
Presenter: Nam Vo
Session: Poster Display
Resources:
Abstract
408P - Increased EGFR and MET expression and corresponding tumor microenvironment (TME) change in hepatocellular carcinoma (HCC) tissues after sorafenib (Sora) treatment
Presenter: Chia Jui Yen
Session: Poster Display
Resources:
Abstract
410P - Systematic evaluation of cell-free DNA fragmentation patterns for cancer diagnosis and enhanced cancer detection through integration of multiple fragmentations
Presenter: Xiangy-Yu Meng
Session: Poster Display
Resources:
Abstract
412P - Multiplex digital spatial profiling (DSP) of protein reveals distinct immune and molecular phenotypes in hepatocellular carcinoma
Presenter: Chia Jui Yen
Session: Poster Display
Resources:
Abstract
413P - Clinical utility of advanced features provided by circulating tumor DNA-based comprehensive genomic profiling
Presenter: Young-gon Kim
Session: Poster Display
Resources:
Abstract
414P - Landscape of ERBB2 mutations in advanced cancers (AC) using circulating tumor DNA (ctDNA) next-generation sequencing (NGS) in Asia and Middle East (AME)
Presenter: Byoung Chul Cho
Session: Poster Display
Resources:
Abstract