Abstract 225P
Background
Common evolution of non-muscle invasive bladder cancer (NMIBC) is local recurrence or progression to muscle invasive bladder cancer (MIBC). Some patients (pts) with NMIBC might develop metastases without progression to MIBC. Clinical evolution of these atypical presentations is unknown. Bladder cancer over the last 5 years has surged by over 13% in India. 50-70% of NMIBC cases recur, and around 10-20% progress to MIBC. Challenge in treatment is identifying the patients with mutations or gene expression patterns for targeted therapy, which is not feasible for all owing to high cost. While omics categorized Western patients, molecular landscape of Indian NMIBC remains incomplete. Herein we report a potential predictive signature, derived by combining transcriptome and whole exome sequencing data of a cohort of NMIBC patients treated in our centre.
Methods
From 2018 to 2021, 25 pts treated at our centre were included for the study, which has been approved by Institutional Ethics committee. Median age at diagnosis was 64Y. 88% received intravesical BCG. 60% were T1 stage and recurrence rate 48%. RNA sequencing and whole exome sequencing were performed on 25 primary NMBIC tumors. Machine learning model was used to predict recurrence status. Mutational status between recurrent and non-recurrent patients was also obtained. The gene expression signature was validated in external datasets including GSE13507 and GSE154261.
Results
435 genes were differentially expressed between recurred and non-recurred patients (p<0.05). Machine learning model predicted recurrence with 90% accuracy. Top pathways upregulated include signalling by nuclear receptors, Shigellosis etc. Downregulated include cell adhesion, PIK-AKT, and ECM reorganization. Validation in external dataset correlated positively with p<0.05. In addition to most previously reported signatures and APOBEC, we also found mutations in FGFR3, ABC transporters, and DAMP, differentially regulated between recurred vs non recurred patients.
Conclusions
We identified novel differentially regulated genes and mutations in genes that predicts recurrence with 90% accuracy. Further analysis in a larger set is underway to complete the validation of the predictive model.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Sri Shankara Cancer Hospital and Research Center.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
39P - Prognostic significance of hypoxic microenvironment biomarkers in invasive ductal breast cancer
Presenter: Sungmin Kang
Session: Poster Display
Resources:
Abstract
40P - Intra-tumoral CD3, CD4, and CD8 as prognostic biomarkers in Asian breast cancer
Presenter: Jia Wern Pan
Session: Poster Display
Resources:
Abstract
41P - Brown fat activation demonstrated on FDG PET/CT predicts survival outcome
Presenter: Sonya Park
Session: Poster Display
Resources:
Abstract
42P - A promising anticancer drug for triple-negative breast cancer: OZ-001 suppresses tumor growth by dual targeting STAT3 and calcium signaling
Presenter: Jisun Kim
Session: Poster Display
Resources:
Abstract
43P - Performance evaluation of a combined risk model for breast cancer risk prediction in Indonesian population (TRIP Study)
Presenter: Marco Wijaya
Session: Poster Display
Resources:
Abstract
44P - Pathological complete response to neoadjuvant chemotherapy and outcomes in Her-2 negative locally advanced breast cancer
Presenter: Amrith Patel
Session: Poster Display
Resources:
Abstract
45P - Demographic determinants of pathological complete response after neoadjuvant chemotherapy in breast cancer
Presenter: Anvesh Dharanikota
Session: Poster Display
Resources:
Abstract
46P - Predicting toxicity following cancer chemotherapy by detecting transporter gene ABCB1 (C1236T, G2677T/A, C3435CT) polymorphism in breast cancer patients receiving chemotherapy with anthracycline and taxane either sequentially or concomitantly
Presenter: Tanuma Mistry
Session: Poster Display
Resources:
Abstract
47P - Sequencing of chemotherapy and surgery among older triple-negative and HER2-positive breast cancer patients with comorbidities
Presenter: Anvesh Dharanikota
Session: Poster Display
Resources:
Abstract
48P - The impact of preoperative axillary ultrasound on the false negative rate of sentinel lymph node biopsy in post neoadjuvant chemotherapy breast cancer patients
Presenter: Byshetty Rajendar
Session: Poster Display
Resources:
Abstract