Abstract 225P
Background
Common evolution of non-muscle invasive bladder cancer (NMIBC) is local recurrence or progression to muscle invasive bladder cancer (MIBC). Some patients (pts) with NMIBC might develop metastases without progression to MIBC. Clinical evolution of these atypical presentations is unknown. Bladder cancer over the last 5 years has surged by over 13% in India. 50-70% of NMIBC cases recur, and around 10-20% progress to MIBC. Challenge in treatment is identifying the patients with mutations or gene expression patterns for targeted therapy, which is not feasible for all owing to high cost. While omics categorized Western patients, molecular landscape of Indian NMIBC remains incomplete. Herein we report a potential predictive signature, derived by combining transcriptome and whole exome sequencing data of a cohort of NMIBC patients treated in our centre.
Methods
From 2018 to 2021, 25 pts treated at our centre were included for the study, which has been approved by Institutional Ethics committee. Median age at diagnosis was 64Y. 88% received intravesical BCG. 60% were T1 stage and recurrence rate 48%. RNA sequencing and whole exome sequencing were performed on 25 primary NMBIC tumors. Machine learning model was used to predict recurrence status. Mutational status between recurrent and non-recurrent patients was also obtained. The gene expression signature was validated in external datasets including GSE13507 and GSE154261.
Results
435 genes were differentially expressed between recurred and non-recurred patients (p<0.05). Machine learning model predicted recurrence with 90% accuracy. Top pathways upregulated include signalling by nuclear receptors, Shigellosis etc. Downregulated include cell adhesion, PIK-AKT, and ECM reorganization. Validation in external dataset correlated positively with p<0.05. In addition to most previously reported signatures and APOBEC, we also found mutations in FGFR3, ABC transporters, and DAMP, differentially regulated between recurred vs non recurred patients.
Conclusions
We identified novel differentially regulated genes and mutations in genes that predicts recurrence with 90% accuracy. Further analysis in a larger set is underway to complete the validation of the predictive model.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Sri Shankara Cancer Hospital and Research Center.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
623P - Advances in methylation analysis of liquid biopsy in early cancer detection of colorectal and lung cancer
Presenter: Sam Martin
Session: Poster Display
Resources:
Abstract
624P - Pan-cancer single-cell isoform atlas: Unraveling isoform dynamics in cancer immunotherapy
Presenter: Lu Pan
Session: Poster Display
Resources:
Abstract
625P - The association of tumor marker concentration and air pollution in cancer survivors and the general population
Presenter: Kyae Hyung Kim
Session: Poster Display
Resources:
Abstract
626P - Percentage of cancer patients undergoing adjusted targeted therapy after ctDNA testing: Insights from a tertiary hospital experience
Presenter: Jisook Yim
Session: Poster Display
Resources:
Abstract
627P - Racial disparities in synchronous and metachronous colorectal and prostate cancer: SEER based study 2000-2020
Presenter: Taha Nagib
Session: Poster Display
Resources:
Abstract