Abstract 117P
Background
The shift toward precision oncology requires the identification of novel, highly specific drug targets. Publicly available transcriptomic data offer a rich resource for identifying such targets, yet they remain largely underutilized. To address this, we present a scalable, data-driven platform for pan-cancer antigen target discovery leveraging the untapped potential of public transcriptomic data, along with extensive biological and pharmaceutical knowledge.
Methods
We integrated 299 microarray datasets using our AI-augmented, human-supervised clinical data curation and transcriptomic data normalization pipeline. We then used our open-source batch effects correction tool, PyComBat, to aggregate them into 15 indication-specific cohorts. The resulting cohorts, profiling 20,347 genes, breadth with 45 curated clinical data elements, exhibit exceptional size, encompassing 15,500 tumor and healthy tissue samples, surpassing TCGA projects by 2.1 times. We also increased patient population representativity with an average of 3.2 histological subtypes included in cohorts, compared to only 1.2 in datasets taken individually.
Results
To handle cancer heterogeneity, we stratified our cohorts into patient subpopulations based on transcriptomic profiles using consensus clustering analysis, interpreted with clinical data and pathway analysis. We then used our target discovery pipeline, starting with differential gene expression analysis, followed by proteomic filters to limit anticipated cytotoxicity and focus on cell surface-bound proteins. An average of 35 and 48 relevant antigen targets were identified at the indication and cluster level, respectively. These included targets already described in the literature, e.g. CD19 in acute lymphoblastic leukemia and BCMA in multiple myeloma. Finally, we characterized the hundreds of candidate targets using bulk and single cell transcriptomic data, proteomic data, and biological knowledge to evaluate their safety, efficacy, and robustness.
Conclusions
Encompassing data integration and target identification, our platform is scalable for the use with any cancer type and antigen-targeting modality, exemplifying its potential to accelerate oncology drug discovery.
Editorial acknowledgement
Clinical trial identification
Legal entity responsible for the study
Epigene Labs.
Funding
Epigene Labs.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
132P - Deciphering aggressive behavior in uterine inflammatory myofibroblastic tumors: Clinicopathological and molecular analysis
Presenter: Nikola Hajkova
Session: Cocktail & Poster Display session
Resources:
Abstract
133P - Exploring genomic instability at the single-cell level using a new method for the inference of copy number alterations
Presenter: Lucrezia Patruno
Session: Cocktail & Poster Display session
Resources:
Abstract
134P - SPICE: Probabilistic reconstruction of copy-number evolution in cancer
Presenter: Abigail Bunkum
Session: Cocktail & Poster Display session
Resources:
Abstract
135P - Revealing the third kind of pathway of colorectal cancer developing from laterally spreading tumors
Presenter: Jianshe Yang
Session: Cocktail & Poster Display session
Resources:
Abstract
136P - Investigating the evolutionary and regulatory dynamics of acquired resistance to BTK inhibitors in activated B-cell diffuse large B-cell lymphoma cells
Presenter: Luminita Ruje
Session: Cocktail & Poster Display session
Resources:
Abstract
137P - PHANTOM: Bootstrap inference of single-cell tumour phylogenies by integrating sequencing read counts
Presenter: Rija Zaidi
Session: Cocktail & Poster Display session
Resources:
Abstract
138P - Analysis of master regulatory transcription factors and their associated transcriptomic profiles in SCLC patients
Presenter: Janik Riese
Session: Cocktail & Poster Display session
Resources:
Abstract
139P - Rewiring of cis-regulatory and kinase signalling networks in acalabrutinib-resistant ABC DLBCL cells
Presenter: Pavel Artemov
Session: Cocktail & Poster Display session
Resources:
Abstract
140P - MYC subgroups delineate specific transcriptomic landscape and shape response to radiotherapy in SCLC
Presenter: Caterina de Rosa
Session: Cocktail & Poster Display session
Resources:
Abstract
141P - An unconditionally dynamic culture system for cancer stem cell
Presenter: Ya-Juan Zhu
Session: Cocktail & Poster Display session
Resources:
Abstract