Abstract 88P
Background
Poly(ADP-ribose) polymerase (PARP) plays a crucial role in DNA repair pathways. PARP trapping induced by PARP inhibitors (iPARPs) leads to replication fork collapse, resulting in clinically relevant cytotoxicity. Therefore, the aim of this study is to describe the potential impact of PARP mutations on interaction with iPARPs.
Methods
The study design involved molecular docking simulations between iPARPs (olaparib, rucaparib, and niraparib) and PARP using Autodock Vina. We reviewed PARP mutations in the COSMIC database and predicted the pathogenicity of mutations near the interaction residues of PARP with the identified iPARPs from the molecular docking.
Results
The amino acids may be related to the interaction of olaparib (Lysine703, Arginine704, Glutamate642, Leucine641, Alanine555, Tryptophan626), niraparib (Alanine555, Tryptophan626, Lysine551, Valine552, Serine554, Glycine530), and rucaparib (Arg878, Aspartate770, Aspartate766, Glutamine759, Glycine888, Tyrosine907) with PARP. In the database, 867 mutations for PARP1 are reported. Among the amino acid residues identified for interaction with olaparib, only the mutation at amino acid 555 (Alanine555Valine) was reported. Regarding niraparib binding sites, mutations were found in amino acids 551 (Lysine551Arginine) and 626 (Tryptophan626Leucine). For Rucaparib, mutations were identified in amino acids 759 (Glutamine759Proline), 766 (Aspartic Acid766Asparagine), 878 (Arginine878Tryptophan), and 888 (Glycine888Aspartic Acid).
Conclusions
Amino acids and their mutations that could be involved in the interaction of olaparib, rucaparib, and niraparib with PARP were identified. Recognizing fewer mutations interacting with olaparib and a greater number interacting with the other PARP inhibitors, olaparib has demonstrated superiority in patients with recurrent disease and BRCA mutations sensitive to platinum. However, prospective studies comparing different PARP inhibitors are needed. Our findings highlight the importance of PARP1 interaction with inhibitors in conferring intrinsic resistance with this new therapy. Further study and supplementation of PARP1 mutation databases are necessary to understand their impact on functionality and determine clinical implications.
Editorial acknowledgement
Clinical trial identification
Legal entity responsible for the study
J.F. Diaz Acosta.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
71P - When neighbors play a role: The importance of interacting proteins in the tumorigenic effect of cancer driver genes
Presenter: Margarida Carrolo
Session: Cocktail & Poster Display session
Resources:
Abstract
72P - SNCG promotes the malignant progression of hepatocellular carcinoma by activation EGFR signaling and recycling
Presenter: Yue Chen
Session: Cocktail & Poster Display session
Resources:
Abstract
73P - TROP2 amplification is highly present in dedifferentiated liposarcoma: Data from the Cancer Genome Atlas (TCGA) in soft tissue sarcoma
Presenter: Sarah Orlando
Session: Cocktail & Poster Display session
Resources:
Abstract
74P - The influence of genetic phenotype on prognosis of osteosarcoma
Presenter: Nasirov Kamalovich
Session: Cocktail & Poster Display session
Resources:
Abstract
76P - Immune engager compounds screening using CRC patient-derived organoids
Presenter: Claudia Maria A. Pinna
Session: Cocktail & Poster Display session
Resources:
Abstract
77P - Elucidating molecularly stratified single agent, and combination, therapeutic strategies targeting MCL1 for lethal prostate cancer
Presenter: Juan Jiménez-Vacas
Session: Cocktail & Poster Display session
Resources:
Abstract
78P - Exploring ecDNA heterogeneity and evolution in non-small cell lung cancer
Presenter: Jeanette Kittel
Session: Cocktail & Poster Display session
Resources:
Abstract
79P - Targeting galectin-9 in BRCA mutant breast cancer
Presenter: Chun Yan So
Session: Cocktail & Poster Display session
Resources:
Abstract
80P - Suppression of glioblastoma progression by FDA-approved central nervous system-accumulating drugs via autophagy modulation and ER stress-induced apoptosis
Presenter: Smita Dey
Session: Cocktail & Poster Display session
Resources:
Abstract
81P - Evaluating the effect of lenvatinib-resistance in hepatocellular carcinoma cells and in lenvatinib-resistant patient-derived PBMCs
Presenter: Luisa Amato
Session: Cocktail & Poster Display session
Resources:
Abstract