Abstract 174P
Background
Mitochondrial transfer (MT) from mesenchymal stem cells showed to restore damaged cell function in inflammatory disease models. We showed that breast cancer (BC) cells acquire mitochondria from human adipose stem cells (hASCs) via tunneling nanotubes (TNTs), promoting multidrug resistance. Here we aimed at evaluating if MT occurs in patient-derived organoids (PDO) co-cultured with hASC.
Methods
We generated PDOs and matched hASCs from consenting BC patients. Fresh tissues were mechanically and enzymatically digested and cultured with proper medium. Organoids were characterized by immunocytochemistry and hASCs by flow cytometry (FC). A 2D-3D co-culture was set up, plating hASCs with PDOs with/without insert: hASCs mitochondria were stained with MitoTracker Red CMXRos® and PDOs cytoplasm with Cell Tracker Blue®. MT was analyzed by immunofluorescence microscopy and FC. Moreover, a TNT inhibitor, Cytochalasin B, was added to the co-culture to evaluate if TNTs are involved in MT. PDOs were subjected to Mitoception (MCP) and treated with cisplatin. Cell viability was assessed with CCK8® assay.
Results
We successfully generated and characterized PDOs from luminal BC patients, and showed that they maintained the same hormone receptor profile and showed cell heterogeneity. Furthermore, we generated primary hASCs from the same patients which showed a FC CD45-CD324-CD34-CD29+CD44+CD73+CD90+CD105+ pattern. We set up a hybrid co-culture model with 3D PDOs and 2D hASCs, showing that MT occurs massively in direct co-culture, but also (at lower level) with insert. Indeed, when treating with Cytochalasin B MT was not blocked, indicating that it occurs with additional mechanisms than TNTs. To validate the effect of MT on drug resistance, we forced hASCs-mitochondria internalization into PDOs via MCP, and treated them with cisplatin, observing an increase in PDOs viability with respect to those not subjected to MCP.
Conclusions
We confirmed that MT occurs in a more physiological model such as PDOs and matched hASCs, in which it reduces drug response. It appears as a key process that could drive tumor aggressiveness, whose better understanding could help to design more effective treatment strategies to overcome drug resistance.
Editorial acknowledgement
Clinical trial identification
Legal entity responsible for the study
The authors.
Funding
MIUR - PRIN 2022.
Disclosure
F. Papaccio: Financial Interests, Institutional, Funding, Liberal Contribution: Merck. All other authors have declared no conflicts of interest.
Resources from the same session
173P - NRF2 levels in high grade serous ovarian cancer: Characterization and treatment
Presenter: Helen Toma
Session: Cocktail & Poster Display session
Resources:
Abstract
175P - Differential impact of increased neoantigen load on PD-L1 positive immune cell infiltrations in comparison to PD-L1 expression on tumor cells
Presenter: Ashok Kumar Vaid
Session: Cocktail & Poster Display session
Resources:
Abstract
176P - Patient race is a determinant of the impact of Y chromosome loss on survival
Presenter: Suhyeon Choi
Session: Cocktail & Poster Display session
Resources:
Abstract
178P - Clinical correlates and impact of ctDNA levels on detecting distinct genomic alteration in patients with metastatic colorectal cancer
Presenter: Luca Boscolo Bielo
Session: Cocktail & Poster Display session
Resources:
Abstract
179P - Identification of guanine-quadruplex forming DNA aptamer: A promising therapeutic strategy for EGFR overexpressed non-small cell lung cancer
Presenter: Deepa Singh
Session: Cocktail & Poster Display session
Resources:
Abstract
180P - Unravelling drug resistance in high-grade serous ovarian cancer through clonal dynamics and single-cell heterogeneity analysis
Presenter: Alvaro Ingles Russo Garces
Session: Cocktail & Poster Display session
Resources:
Abstract
181P - Establishment of primary prostate cancer patient-derived organoids to assess PARP inhibitors antitumor activity beyond synthetic lethality
Presenter: Tatiana P. Grazioso
Session: Cocktail & Poster Display session
Resources:
Abstract
182P - METHRO: Multicentric study of risk of thrombosis in patients with NSCLC harboring a METexon 14 skipping mutation
Presenter: Maria Virginia Sanchez Becerra
Session: Cocktail & Poster Display session
Resources:
Abstract
183P - SomaVar: A web application for somatic variant storage, annotation and classification
Presenter: Sorin Armeanu-Ebinger
Session: Cocktail & Poster Display session
Resources:
Abstract