Abstract 211P
Background
Gastric cancer patients with peritoneal metastasis (GCPM) experience a rapidly deteriorating clinical trajectory characterized by therapeutic resistance and dismal survival, particularly following the development of malignant ascites. However, the intricate dynamics within the peritoneal microenvironment (PME) during treatment process remains largely unknown.
Methods
Matched samples from primary tumors (PT), malignant ascites, and peritoneal metastases (PM), along with paired pre-treatment and post-chemo/immunotherapy progression ascites samples, were collected from 17 patients. These samples were subjected to single-cell RNA sequencing (n = 28) and spatial transcriptomics (n = 3), generating a single-cell landscape comprising 233,986 cells. Furthermore, post-hoc analyses of a phase 1 clinical trial (n = 20, NCT03710265) and immunotherapy cohort (n = 499) within our center were conducted to validate the findings.
Results
Tracing the evolutionary trajectory of epithelial cells unveiled the terminally differentially MUC1+ cancer cells with a high epithelial-to-mesenchymal transition potential, which correlates with poor prognosis. A significant expansion of macrophage infiltrates, which exhibited highest pro-angiogenic activity, was observed in the ascites compared to PT and PM. Besides, higher C1Q+ macrophage infiltrates correlated with significantly lower GZMA+ T-lymphocyte infiltrates in therapeutic failure cases, potentially mediated by the LGALS9-CD45 and SPP1-CD44 ligand-receptor interactions. In the chemoresistant group, intimate interactions between C1Q+ macrophages and fibroblasts through the complement activation pathway were found. In the group demonstrating immunoresistance, heightened TGF-β production activity was detected in MUC1+ cancer cells. Ultimately, post-hoc analyses indicated that co-targeting TGF-β and PDL1 pathways may confer superior clinical benefits than sole anti-PD-1/PD-L1 therapy for GCPM patients.
Conclusions
Our findings elucidated the cellular differentiation trajectories and crucial drug resistance features within PME, facilitating the exploration of effective targets for GCPM treatment.
Legal entity responsible for the study
Peking University Cancer Hospital.
Funding
National Natural Science Foundation of China.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
53P - Novel ex-vivo manufacturing of transiently expressed armoured CAR T cells for glioblastoma
Presenter: Saket Srivastava
Session: Poster Display session
54P - Superior antitumor activities of fourth-generation CAR-T cells containing three costimulatory domains targeting GD2-positive tumors
Presenter: Jatuporn Sujjitjoon
Session: Poster Display session
55P - Engineering of chimeric cytokine receptors (CCR) to induce IL-7 signaling to CAR-T cells for solid tumor treatment
Presenter: Marta Soria Castellano
Session: Poster Display session
56P - Potent antitumor efficiency of CD19-CAR T cells self-secreting PD-L1 x CD3 BiTE against aggressive B-cell lymphoma
Presenter: Jatuporn Sujjitjoon
Session: Poster Display session
57P - SENDER™ Directed LNP Delivery of mRNA for In Situ generation of highly potent CAR T Cells
Presenter: Biao Ma
Session: Poster Display session
58P - Cardiovascular outcomes of novel CAR-T cell therapies: A meta-analysis of incidence, risk factors, and management of cardiotoxicity
Presenter: Hashim Talib Hashim
Session: Poster Display session
59P - Long term survival data from all recurrent/metastatic head and neck squamous cell carcinoma (R/M HNSCC) patients treated with MVX-ONCO-1 during open-labelled phase I and phase IIa clinical trials
Presenter: Nicolas Mach
Session: Poster Display session
60P - Innovative applications of neoantigens in dendritic cell-derived exosome (DEX) therapy and their impact on personalized cancer treatment
Presenter: Ramon Gutierrez
Session: Poster Display session
61P - Optimized protocol for the accelerated production of dendritic cell-derived exosomes (DEXs): Achieving speed without compromising efficacy
Presenter: Ramon Gutierrez
Session: Poster Display session
62P - Ecto-CRT induction of NKp46 surface expression increases osimertinib-resistant lung cancer’s sensitivity to NK cells
Presenter: Sumei Chen
Session: Poster Display session