Abstract 191P
Background
Carcinotech's 3D bioprinted tumour models offer a transformative platform for advancing cancer drug screening and therapeutic testing by accurately replicating the complexity of the tumour microenvironment (TME). Unlike traditional 2D cultures, organoids, or animal models, these bioprints incorporate multiple cell types from patient-derived cancer tissues in a robust tissue matrix, providing a more biologically relevant model for preclinical studies, particularly in immuno-oncology and personalised medicine. Our recent research shows that these models effectively represent the presence of tumor-infiltrating lymphocytes (TILs), a crucial immune cell group targeted by advanced immunotherapies.
Methods
Patient ovarian tumour biopsies were sectioned, processed into FFPE blocks and TME characterised using immunofluorescence (IF) technique. Patient-derived cells were cultured as a heterogeneous population and 3D-bioprinted with custom bioink onto 96-well plate format. After 14 days in culture, characterisation of 3D-model TME composition was performed to compare it to the original tumour to assure high TME representation. Additionally, Carcino3D ovarian cancer models were treated with well-established immunotherapeutics Pembrolizumab and Rituximab, and activation of immune markers using IF as well as pro-inflammatory release of Granzyme B post-treatment tested.
Results
While the viability of the Carcino3D tumour model slightly declined after treatment, we observed stronger immune responses, including cytokine release, when treated with Pembrolizumab or Rituximab. Through advanced 3D imaging and AI-based analysis, we identified an increase in T-cell numbers post-treatment. Interestingly, early-stage T-cell activation decreased, while late-stage activation markers increased, confirming the models' accuracy in predicting therapeutic outcomes.
Conclusions
These findings highlight the potential of Carcinotech's 3D bioprinted models to significantly accelerate immunotherapy research and improve drug development pipelines. By offering a more dynamic and representative testing platform, these models promise to reshape the future of cancer drug discovery and personalised treatment approaches.
Legal entity responsible for the study
Carcinotech Ltd.
Funding
Carcinotech.
Disclosure
K. Pawlicka, M. McDonald, B. Kennedy, V. Metodieva, J. Adams: Financial Interests, Institutional, Full or part-time Employment: Carcinotech.
Resources from the same session
43P - Machine learning radiomics based on CT to predict response to lenvatinib plus tislelizumab based therapy for unresectable hepatocellular carcinoma
Presenter: Gang Chen
Session: Poster Display session
Resources:
Abstract
44P - Machine learning-based prediction of survival in patients with metastatic renal cell carcinoma receiving first-line immunotherapy
Presenter: Ahmed Elgebaly
Session: Poster Display session
Resources:
Abstract
45P - Gut microbiome signatures for exploring the correlation between gut microbiome and immune therapy response using machine learning approach
Presenter: Han Li
Session: Poster Display session
Resources:
Abstract
46P - Abnormal gut microbiota may cause PD-1 inhibitor-related cardiotoxicity via suppressing regulatory T cells
Presenter: Zeeshan Afzal
Session: Poster Display session
Resources:
Abstract
47P - Correlation of clinical, genetic and transcriptomic traits with PD-L1 positivity in TNBC patients
Presenter: Anita Semertzidou
Session: Poster Display session
Resources:
Abstract
48P - The A2AR antagonist inupadenant promotes humoral responses in preclinical models
Presenter: Paola Tieppo
Session: Poster Display session
Resources:
Abstract
49P - Highly potent novel armoured IL13Ra2 CAR T cell targeting glioblastoma
Presenter: Maurizio Mangolini
Session: Poster Display session
Resources:
Abstract
50P - Phase I trial of P-MUC1C-ALLO1 allogeneic CAR-T cells in advanced epithelial malignancies
Presenter: David Oh
Session: Poster Display session
Resources:
Abstract
51P - Unlocking CAR-T cell potential: Lipid metabolites in overcoming exhaustion in ovarian cancer
Presenter: Xiangyu Chang
Session: Poster Display session
Resources:
Abstract
52P - Tumor-targeted cytokine release by genetically-engineered myeloid cells rescues CAR-T activity and engages endogenous T cells against high-grade glioma in mouse models
Presenter: Federico Rossari
Session: Poster Display session
Resources:
Abstract