Abstract 191P
Background
Carcinotech's 3D bioprinted tumour models offer a transformative platform for advancing cancer drug screening and therapeutic testing by accurately replicating the complexity of the tumour microenvironment (TME). Unlike traditional 2D cultures, organoids, or animal models, these bioprints incorporate multiple cell types from patient-derived cancer tissues in a robust tissue matrix, providing a more biologically relevant model for preclinical studies, particularly in immuno-oncology and personalised medicine. Our recent research shows that these models effectively represent the presence of tumor-infiltrating lymphocytes (TILs), a crucial immune cell group targeted by advanced immunotherapies.
Methods
Patient ovarian tumour biopsies were sectioned, processed into FFPE blocks and TME characterised using immunofluorescence (IF) technique. Patient-derived cells were cultured as a heterogeneous population and 3D-bioprinted with custom bioink onto 96-well plate format. After 14 days in culture, characterisation of 3D-model TME composition was performed to compare it to the original tumour to assure high TME representation. Additionally, Carcino3D ovarian cancer models were treated with well-established immunotherapeutics Pembrolizumab and Rituximab, and activation of immune markers using IF as well as pro-inflammatory release of Granzyme B post-treatment tested.
Results
While the viability of the Carcino3D tumour model slightly declined after treatment, we observed stronger immune responses, including cytokine release, when treated with Pembrolizumab or Rituximab. Through advanced 3D imaging and AI-based analysis, we identified an increase in T-cell numbers post-treatment. Interestingly, early-stage T-cell activation decreased, while late-stage activation markers increased, confirming the models' accuracy in predicting therapeutic outcomes.
Conclusions
These findings highlight the potential of Carcinotech's 3D bioprinted models to significantly accelerate immunotherapy research and improve drug development pipelines. By offering a more dynamic and representative testing platform, these models promise to reshape the future of cancer drug discovery and personalised treatment approaches.
Legal entity responsible for the study
Carcinotech Ltd.
Funding
Carcinotech.
Disclosure
K. Pawlicka, M. McDonald, B. Kennedy, V. Metodieva, J. Adams: Financial Interests, Institutional, Full or part-time Employment: Carcinotech.
Resources from the same session
53P - Novel ex-vivo manufacturing of transiently expressed armoured CAR T cells for glioblastoma
Presenter: Saket Srivastava
Session: Poster Display session
Resources:
Abstract
54P - Superior antitumor activities of fourth-generation CAR-T cells containing three costimulatory domains targeting GD2-positive tumors
Presenter: Jatuporn Sujjitjoon
Session: Poster Display session
Resources:
Abstract
55P - Engineering of chimeric cytokine receptors (CCR) to induce IL-7 signaling to CAR-T cells for solid tumor treatment
Presenter: Marta Soria Castellano
Session: Poster Display session
Resources:
Abstract
56P - Potent antitumor efficiency of CD19-CAR T cells self-secreting PD-L1 x CD3 BiTE against aggressive B-cell lymphoma
Presenter: Jatuporn Sujjitjoon
Session: Poster Display session
Resources:
Abstract
57P - SENDER™ Directed LNP Delivery of mRNA for In Situ generation of highly potent CAR T Cells
Presenter: Biao Ma
Session: Poster Display session
Resources:
Abstract
58P - Cardiovascular outcomes of novel CAR-T cell therapies: A meta-analysis of incidence, risk factors, and management of cardiotoxicity
Presenter: Hashim Talib Hashim
Session: Poster Display session
Resources:
Abstract
59P - Long term survival data from all recurrent/metastatic head and neck squamous cell carcinoma (R/M HNSCC) patients treated with MVX-ONCO-1 during open-labelled phase I and phase IIa clinical trials
Presenter: Nicolas Mach
Session: Poster Display session
Resources:
Abstract
60P - Innovative applications of neoantigens in dendritic cell-derived exosome (DEX) therapy and their impact on personalized cancer treatment
Presenter: Ramon Gutierrez
Session: Poster Display session
Resources:
Abstract
61P - Optimized protocol for the accelerated production of dendritic cell-derived exosomes (DEXs): Achieving speed without compromising efficacy
Presenter: Ramon Gutierrez
Session: Poster Display session
Resources:
Abstract
62P - Ecto-CRT induction of NKp46 surface expression increases osimertinib-resistant lung cancer’s sensitivity to NK cells
Presenter: Sumei Chen
Session: Poster Display session
Resources:
Abstract