Abstract 60P
Background
Personalized immunotherapy has proven to be crucial in the treatment of tumors with high genetic heterogeneity. Neoantigens derived from tumor mutations allow for precise immune activation. This study addresses the use of exosomes derived from dendritic cells pulsed with neoantigens in co-culture to enhance immune response. The combination of neoantigens and pulsing in dendritic cells optimizes immune activation, laying new therapeutic groundwork in cancer treatment.
Methods
Exosomes were generated from dendritic cells subjected to co-culture with pulsing using tumor-specific neoantigens. Exosomes were characterized by Nanosight, with an average size of 104.7 ± 10.3 nm and concentration of 7.15 x 10ˆ9 particles/mL. The presence of the exosomal markers CD63, CD81 and Alix was confirmed by Western blot. To evaluate the efficacy of coculture and dendritic cell pulsing, Native T cell activation was measured by flow cytometry (CD69 and CD25), proinflammatory cytokine production (IFN-γ, IL-6, TNF-α) by ELISA and Cytometric Bead Array, and apoptosis induction in tumor cells by lactate dehydrogenase (LDH) release.
Results
Native T cell activation showed an increase of 50.7% (95% CI: 48.2-53.1%) in cultures treated with pulsed dendritic cell-derived exosomes. IFN-γ production increased by 55.4% (95% CI: 53.6-57.2%), IL-6 by 49.8% (95% CI: 47.9-51.7%) and TNF-α by 30.5% (95% CI: 28.8-32.1%). The apoptosis rate in treated tumor cells increased by 34.7% (95% CI: 32.4-36.8%) and LDH release increased by 31.9% (95% CI: 29.7-33.5%) versus controls. The results indicate an effective immune activation.
Conclusions
This study demonstrates that exosomes derived from neoantigen-pulsed dendritic cells in coculture have great potential to activate specific immune responses and modify the tumor microenvironment. The observed increases in T cell activation, cytokine production and apoptosis suggest that this strategy can be successfully applied in personalized cancer immunotherapy, particularly in tumors resistant to conventional therapies. Further clinical studies are recommended to validate these results.
Legal entity responsible for the study
Orlando Global R&D LLC.
Funding
Biotech Foundation.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
53P - Novel ex-vivo manufacturing of transiently expressed armoured CAR T cells for glioblastoma
Presenter: Saket Srivastava
Session: Poster Display session
Resources:
Abstract
54P - Superior antitumor activities of fourth-generation CAR-T cells containing three costimulatory domains targeting GD2-positive tumors
Presenter: Jatuporn Sujjitjoon
Session: Poster Display session
Resources:
Abstract
55P - Engineering of chimeric cytokine receptors (CCR) to induce IL-7 signaling to CAR-T cells for solid tumor treatment
Presenter: Marta Soria Castellano
Session: Poster Display session
Resources:
Abstract
56P - Potent antitumor efficiency of CD19-CAR T cells self-secreting PD-L1 x CD3 BiTE against aggressive B-cell lymphoma
Presenter: Jatuporn Sujjitjoon
Session: Poster Display session
Resources:
Abstract
57P - SENDER™ Directed LNP Delivery of mRNA for In Situ generation of highly potent CAR T Cells
Presenter: Biao Ma
Session: Poster Display session
Resources:
Abstract
58P - Cardiovascular outcomes of novel CAR-T cell therapies: A meta-analysis of incidence, risk factors, and management of cardiotoxicity
Presenter: Hashim Talib Hashim
Session: Poster Display session
Resources:
Abstract
59P - Long term survival data from all recurrent/metastatic head and neck squamous cell carcinoma (R/M HNSCC) patients treated with MVX-ONCO-1 during open-labelled phase I and phase IIa clinical trials
Presenter: Nicolas Mach
Session: Poster Display session
Resources:
Abstract
61P - Optimized protocol for the accelerated production of dendritic cell-derived exosomes (DEXs): Achieving speed without compromising efficacy
Presenter: Ramon Gutierrez
Session: Poster Display session
Resources:
Abstract
62P - Ecto-CRT induction of NKp46 surface expression increases osimertinib-resistant lung cancer’s sensitivity to NK cells
Presenter: Sumei Chen
Session: Poster Display session
Resources:
Abstract
63P - Single-cell RNA-seq combined with bulk RNA-seq revealed the involvement of pancreatic cancer tissue-resident macrophages in tumour progression and the immunotherapy response
Presenter: Bin Wu
Session: Poster Display session
Resources:
Abstract