Abstract 60P
Background
Personalized immunotherapy has proven to be crucial in the treatment of tumors with high genetic heterogeneity. Neoantigens derived from tumor mutations allow for precise immune activation. This study addresses the use of exosomes derived from dendritic cells pulsed with neoantigens in co-culture to enhance immune response. The combination of neoantigens and pulsing in dendritic cells optimizes immune activation, laying new therapeutic groundwork in cancer treatment.
Methods
Exosomes were generated from dendritic cells subjected to co-culture with pulsing using tumor-specific neoantigens. Exosomes were characterized by Nanosight, with an average size of 104.7 ± 10.3 nm and concentration of 7.15 x 10ˆ9 particles/mL. The presence of the exosomal markers CD63, CD81 and Alix was confirmed by Western blot. To evaluate the efficacy of coculture and dendritic cell pulsing, Native T cell activation was measured by flow cytometry (CD69 and CD25), proinflammatory cytokine production (IFN-γ, IL-6, TNF-α) by ELISA and Cytometric Bead Array, and apoptosis induction in tumor cells by lactate dehydrogenase (LDH) release.
Results
Native T cell activation showed an increase of 50.7% (95% CI: 48.2-53.1%) in cultures treated with pulsed dendritic cell-derived exosomes. IFN-γ production increased by 55.4% (95% CI: 53.6-57.2%), IL-6 by 49.8% (95% CI: 47.9-51.7%) and TNF-α by 30.5% (95% CI: 28.8-32.1%). The apoptosis rate in treated tumor cells increased by 34.7% (95% CI: 32.4-36.8%) and LDH release increased by 31.9% (95% CI: 29.7-33.5%) versus controls. The results indicate an effective immune activation.
Conclusions
This study demonstrates that exosomes derived from neoantigen-pulsed dendritic cells in coculture have great potential to activate specific immune responses and modify the tumor microenvironment. The observed increases in T cell activation, cytokine production and apoptosis suggest that this strategy can be successfully applied in personalized cancer immunotherapy, particularly in tumors resistant to conventional therapies. Further clinical studies are recommended to validate these results.
Legal entity responsible for the study
Orlando Global R&D LLC.
Funding
Biotech Foundation.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
110P - Safety and effectiveness of adebrelimab as first-line treatment in extensive-stage small-cell lung cancer: A prospective, real-world study
Presenter: Junxu Wen
Session: Poster Display session
Resources:
Abstract
111P - Real-world treatment patterns and clinical outcomes in Chinese stage III non-small cell lung cancer (NSCLC) patients: Results of MOOREA study
Presenter: Ligang Xing
Session: Poster Display session
Resources:
Abstract
112P - Serplulimab combined with chemotherapy and anlotinib for extensive-stage small-cell lung cancer: A multicenter real-world experience
Presenter: Jun Wang
Session: Poster Display session
Resources:
Abstract
113P - Clinical outcomes of avelumab and pembrolizumab in advanced urothelial cancer: An observational multicenter retro-prospective study on patients undergoing treatment in clinical practice (AVePEm study)
Presenter: Irene Torresan
Session: Poster Display session
Resources:
Abstract
114P - Cadonilimab plus chemotherapy as first-line (1L) treatment for metastatic gastric (G) or gastroesophageal junction adenocarcinoma (GEJA) with PD-L1 CPS=5: Updated results from a real-world study
Presenter: Qi Xu
Session: Poster Display session
Resources:
Abstract
115P - Immune-related adverse events in cancer patients treated with immune checkpoint inhibitors in Germany: A population-based study
Presenter: Lucie Heinzerling
Session: Poster Display session
Resources:
Abstract
116TiP - An umbrella trial (RECHALLENGE) to evaluate the safety and preliminary efficacy of combination or sequential immunotherapy in advanced solid tumor patients after disease progression in clinical trials
Presenter: Huilei Miao
Session: Poster Display session
Resources:
Abstract
122P - Intracellular adenosine drives profound lymphocyte suppression and can be reversed with EOS-984: A potent ENT1 antagonist
Presenter: Erica Houthuys
Session: Poster Display session
Resources:
Abstract
123P - Combination potential of EO-3021, a CLDN18.2 vc-MMAE ADC, with VEGFR2 or PD1 inhibition in preclinical models of CLDN18.2-expressing cancers
Presenter: Thomas O'Hare
Session: Poster Display session
Resources:
Abstract
124P - AI-designed cancer vaccines: Antigens from the dark genome are promising cancer vaccine targets
Presenter: Daniela Kleine-Kohlbrecher
Session: Poster Display session
Resources:
Abstract