Abstract 230P
Background
Our prior research demonstrated that the presence of detectable plasma levels of acetaminophen (APAP) at the initiation of treatment was associated to a poor clinical outcome in cancer patients receiving immune checkpoint inhibitors (ICIs), independent of other known prognostic factors (Bessede et al. Ann Oncol 2022). This observation raised concerns about the potential immunomodulatory effects of APAP. Consequently, we aimed to elucidate the mechanistic basis of APAP’s immunosuppressive action.
Methods
We established an in vitro model using peripheral blood mononuclear cells (PBMCs) activated with anti-CD3 in the presence of APAP. Cellular responses were assessed at 3 and 6 days post-treatment using live-cell imaging and immunophenotyping via flow cytometry. Cytokine production was quantified through Homogeneous Time-Resolved Fluorescence assays, and key analytes were measured using ELISA.
Results
Our findings revealed that APAP significantly reduced the production of interferon-gamma (IFNγ) and suppressed PBMC proliferation in a dose-dependent manner, independent of cell death pathways. Notably, serotonin and kynurenine pathways did not appear to contribute to the impaired IFNγ response. In the presence of APAP, a distinct subset of CD4+ T cells emerged, characterized by low IFNγ production and expression of exhaustion markers such as Tim-3 and LAG-3, although PD-1 expression remained low. These results suggest that APAP selectively affects a subpopulation of immune cells, driving their exhaustion. Additionally, we identified tramadol and nefopam as viable alternatives to APAP, as neither PBMC cluster formation nor IFNγ production were impaired in our model.
Conclusions
APAP exerts a potent immunosuppressive effect on PBMC activation, promoting the expansion of an exhausted CD4+ T cell subset. Ongoing investigations using single-cell RNA sequencing will provide deeper insights into the phenotypic and functional characteristics of these cells. These findings may have critical implications for the use of APAP in cancer patients undergoing immunotherapy and highlight the potential of alternative analgesics with limited immunomodulatory activity.
Legal entity responsible for the study
The authors.
Funding
Fondation ARC pour la recherche sur le cancer.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
53P - Novel ex-vivo manufacturing of transiently expressed armoured CAR T cells for glioblastoma
Presenter: Saket Srivastava
Session: Poster Display session
54P - Superior antitumor activities of fourth-generation CAR-T cells containing three costimulatory domains targeting GD2-positive tumors
Presenter: Jatuporn Sujjitjoon
Session: Poster Display session
55P - Engineering of chimeric cytokine receptors (CCR) to induce IL-7 signaling to CAR-T cells for solid tumor treatment
Presenter: Marta Soria Castellano
Session: Poster Display session
56P - Potent antitumor efficiency of CD19-CAR T cells self-secreting PD-L1 x CD3 BiTE against aggressive B-cell lymphoma
Presenter: Jatuporn Sujjitjoon
Session: Poster Display session
57P - SENDER™ Directed LNP Delivery of mRNA for In Situ generation of highly potent CAR T Cells
Presenter: Biao Ma
Session: Poster Display session
58P - Cardiovascular outcomes of novel CAR-T cell therapies: A meta-analysis of incidence, risk factors, and management of cardiotoxicity
Presenter: Hashim Talib Hashim
Session: Poster Display session
59P - Long term survival data from all recurrent/metastatic head and neck squamous cell carcinoma (R/M HNSCC) patients treated with MVX-ONCO-1 during open-labelled phase I and phase IIa clinical trials
Presenter: Nicolas Mach
Session: Poster Display session
60P - Innovative applications of neoantigens in dendritic cell-derived exosome (DEX) therapy and their impact on personalized cancer treatment
Presenter: Ramon Gutierrez
Session: Poster Display session
61P - Optimized protocol for the accelerated production of dendritic cell-derived exosomes (DEXs): Achieving speed without compromising efficacy
Presenter: Ramon Gutierrez
Session: Poster Display session
62P - Ecto-CRT induction of NKp46 surface expression increases osimertinib-resistant lung cancer’s sensitivity to NK cells
Presenter: Sumei Chen
Session: Poster Display session