Abstract 184P
Background
Somatic cell reprogramming results in generation of induced pluripotent stem cells (iPSCs) which demonstrate similar gene expression, morphology, epigenetic profile and three-germ layer differentiation capacity to those of embryonic stem cells. Therefore patient-derived iPSCs can act as a powerful tool both for understanding disease mechanism and for regenerative medicine. Cancer cell reprogramming offers a unique model to study tumor initiation and progression as well as to create patient-specific cancer models for toxicity screening and developing personalised therapeutic strategies. Here, we primarily focused on reprogramming grade 4 bladder cancer cell lines to identify potential biomarkers for early cancer detection and cancer immunotherapy.
Methods
Grade 4 bladder cancer cells were transduced with a non-genome integrating Sendai virus system carrying Yamanaka factors Oct3/4, Sox2, Klf4, and c-Myc. Reprogrammed bladder cancer cells were cultured in a feeder-free iPSC system. Pluripotency-associated features were characterised using functional assays, immunofluorescence and western blotting. The nano HPLC LC-MS/MS system was utilised for comprehensive proteome analysis, followed by protein-protein interaction network analysis via STRING.
Results
Reprogrammed bladder cancer cells expressed pluripotency-associated factors, changed cell morphology and motility. Proteomic analysis showed a decrease in the proteins related to the immune system process. Protein-protein interaction network analysis highlighted key proteins involved in antigen processing and presentation of endogeneous peptide antigen via MHC class I and interleukin-27-mediated signaling pathway.
Conclusions
After somatic cell reprogramming, ancestral cancer cells shift from malignancy to benignity in their proteome, affecting various cellular processes including immune system function, stem cell maintenance, differentiation, apoptosis, cell adhesion, and motility. Major changes were observed in the proteins of the immune system, indicating that the unique immunogenicity of cancer cell-derived iPS cells could be used in targeted therapies and potential drug design.
Legal entity responsible for the study
Banu Iskender Izgi.
Funding
Health Institutes of Türkiye (TUSEB).
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
226P - Profiling of gastric adenocarcinomas from EU and LATAM countries identifies distinct tumor immune subgroups and a central role of the tumor microbiome in shaping the immune microenvironment
Presenter: Manuel Cabeza Segura
Session: Poster Display session
228P - Modulating mitochondrial dynamics in TAMs to enhance anti-tumor immunity
Presenter: Pu-ste Liu
Session: Poster Display session
Resources:
Abstract
229P - Investigation of the effects of long-noncoding RNA NRAV on interferon response in melanoma
Presenter: Kadir Durmus
Session: Poster Display session
230P - Deciphering the mechanism of immunosuppressive activity of acetaminophen in the context of cancer immunotherapy
Presenter: Jeanne Lena
Session: Poster Display session
231P - The impact of calcitriol and tacalcitol on the Th17 lymphocytes in breast cancer
Presenter: Beata Filip-Psurska
Session: Poster Display session