Abstract 151P
Background
Colorectal cancer (CRC) represents ∼7% of new cancer cases and 11% of cancer deaths worldwide. Tumor-Infiltrating Lymphocyte (TIL) immunotherapy is efficacious against melanoma, but its potency in epithelial cancers such as CRC remains inconsistent. We hypothesized that growing tumor organoids in an Air-Liquid Interface (ALI) system prior to TIL expansion might select for the rare tumor-specific T cells that mediate antitumor activity.
Methods
ALI CRC organoids were generated by embedding intact tumor fragments within a collagen matrix on top of a permeable support membrane exposed to both air and culture medium. This configuration facilitates optimal oxygenation, supporting the growth of faithful mini replicas of original tissue that preserve stroma and tumor-infiltrating immune cells, including cytotoxic T cells. To characterize ALI TILs after ex vivo expansion, cell surface markers were analyzed by flow cytometry and immune gene expression by single-cell RNA sequencing. We also established submerged organoids in vitro and transplanted them as organoid derived xenografts (ODX) in mice to assess antitumor activity. Tumor reactivity and T cell cytotoxicity were measured as cytokine induction and tumor cell death upon in vitro co-culture, while preclinical in vivo efficacy was assessed as tumor growth inhibition.
Results
Our ALI process yielded high cell numbers, mostly comprised of CD4+ and CD8+ T cells of the effector and central memory subtypes. T cell receptor analysis revealed unique sets of polyclonal repertoires, suggestive of tumor specificity. Functionally, ALI TIL tumor reactivity and killing were demonstrated in vitro, that translated to a potent in vivo antitumor activity against autologous ODX models.
Conclusions
Our study presents an innovative TIL immunotherapy approach for CRC. The application of ALI organoid culture conditions prior to the ex vivo TIL expansion resulted in a cell product with appropriate phenotypic and functional features, warranting further development of the novel process.
Legal entity responsible for the study
The authors.
Funding
Khosla Ventures, Peregrine Ventures, Alexandria, Wilson Sonsini.
Disclosure
M. Leushacke: Financial Interests, Institutional, Principal Investigator: Nextvivo. M. Pari, J. Ju, P-Y. Lin, B. Shreshta: Financial Interests, Personal, Stocks/Shares: NextVivo. C. Chartier: Financial Interests, Institutional, Officer: NextVivo.
Resources from the same session
26P - Liquid biopsy as promising source of plasma extracellular vesicle biomarkers of response to Cabozantinib (CABO) plus Durvalumab (DURVA) in advanced urothelial carcinoma (UC) or non-UC variant histologies (VH) patients (the Phase 2 ARCADIA trial)
Presenter: Veronica Huber
Session: Poster Display
27P - Peripheral biomarker analysis in patients with advanced urothelial carcinoma (UC) after platinum chemotherapy treated with Cabozantinib (CABO) plus Durvalumab (DURVA): preliminary analysis from the Phase 2 ARCADIA trial.
Presenter: Francesco Sgambelluri
Session: Poster Display
28P - 3-year follow-up analysis of disease-free survival in CheckMate 274 by PD-L1 expression using tumor cell and combined positive scoring algorithms
Presenter: Frank Stenner-Liewen
Session: Poster Display
30P - CD4+ T cells within the tumor microenvironment are an independent predictor of recurrence, but do not improve the performance of a predictive model in oral squamous cell carcinoma
Presenter: Sangeeta Bisheshar
Session: Poster Display
31P - Characterization of pre-exhausted / exhausted state of CD8+ T cells in HRAS mutant head and neck carcinomas (HNSCCs). Implications for response to immune checkpoint blockade (ICB).
Presenter: Ioannis Kotsantis
Session: Poster Display
32P - Tumor-agnostic plasma assay for circulating tumor DNA predicts outcome in recurrent and/or metastatic squamous cell carcinoma of the head and neck treated with a PD-1 inhibitor
Presenter: Natasha Honoré
Session: Poster Display
34P - Heterogeneous response to Immune Checkpoint Inhibitors in metastatic melanoma patients - assessment of lesion-level response with 18F-FDG PET/CT
Presenter: Katja Strasek
Session: Poster Display