Abstract 198P
Background
Immunotherapy for cancer is closely related to the tumor immunosuppressive microenvironment (TIME). Resiquimod (a mixed TLR7/8 agonist also known as R848) has been shown to mediate promising immunostimulatory activity in a variety of preclinical models. Poly(D, L-lactic-co-glycolic acid) (PLGA) is one of the most commonly used biodegradable polymer.
Methods
The nanoparticles loaded with R848 (CD@R848@NP) were prepared by improved emulsion-solvent evaporation method, and the drug loading rate and entrapment efficiency were calculated. Its physical and chemical properties and drug release stability were measured, and its polarization effect on macrophages was evaluated in vitro. After labeling with IR780 fluorescent dye, the localization of the nanoparticles in vivo and in vitro was analyzed. CD@R848@NP was used to treat MC38 colon cancer mice by tail vein injection combined with intraperitoneal injection of TNFR2 antibody.
Results
(1) The prepared CD@R848@NP nanoparticles have strong stability, no obvious cytotoxicity, sustained release effect and increased release under acidic conditions. The load content (LC) and entrapment efficiency (EE) of R848 were (3.11 ±0.61)% and (65.36 ±3)%. (2) In vitro experiments showed that HP-β-CD modified nanoparticles could be better absorbed by macrophages, and in vivo localization experiments confirmed that they could be better located in tumor tissues. (3) CD@R848@NP combined with Anti-TNFR2 could eliminate MC38 tumor in mice, and there was no significant change in body weight. Hue results showed that the nanoparticles had no obvious toxicity to all organs. After 24 hours of administration, the secretion of IL-12 factor in blood of mice was significantly higher than that of other groups. The results of tumor histochemistry showed that the secretion of TNF α and IL-6 factors in CD@R848@NP was significantly higher than that in other groups.
Conclusions
PLGA nanoparticles encapsulated with R848 can effectively deliver drugs to tumor tissue and induce tumor-associated macrophages to polarize into M1 macrophages. On the other hand, TNFR2 antibodies can inhibit the activation of Treg cells, reduce immunosuppression in tumor microenvironment and eliminate tumor.
Legal entity responsible for the study
The authors.
Funding
The National Natural Science Foundation of China (82060308), Guizhou Immunotherapy Research Talent Base (RCJD2018-11).
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
14P - Integrated modelling of T cell repertoires to identify clonotype signatures of ICI response
Presenter: Juan Luis Melero
Session: Poster Display
16P - Exosomal PD-L1 and lactate predict clinical outcomes of PD-1 blockade combined with chemotherapy in advanced-stage gastric and gastroesophageal junction adenocarcinoma
Presenter: Yongshun Chen
Session: Poster Display
17P - Spatial Characteristics Associated with the Chemo and Immuno-treatment Response of Gastric Cancer Revealed by Multi-omics Analysis
Presenter: Gang Che
Session: Poster Display
18P - Association of DNA methylation profiles with pathologic complete response in early triple negative breast cancer patients receiving neoadjuvant chemoimmunotherapy
Presenter: Angelika Starzer
Session: Poster Display
19P - The prognostic value of soluble CD73 in advanced triple-negative breast cancer: an exploratory analysis of the SYNERGY trial
Presenter: Denis Zoë
Session: Poster Display
21P - Mass cytometry reveals a population of exhausted CD8+ T cells associated with durvalumab/tremelimumab/vinorelbine efficacy in advanced cervical cancer (iMOVIE).
Presenter: Alexandre Bertucci
Session: Poster Display
22P - Predictive value of Tertiary Lymphoid Structure in patients with mismatch repair deficient advanced/ recurrent endometrial cancer treated with Dostarlimab.
Presenter: Maria Kfoury
Session: Poster Display
23P - Circulating immune cells and activity of immune checkpoint inhibitors in metastatic renal cell carcinoma
Presenter: Ronan Flippot
Session: Poster Display
24P - Chromosome 3p-related gene alterations (GA) as biomarkers for immunocombinations in metastatic renal cell carcinoma (mRCC): a hypothesis-generating analysis
Presenter: Matteo Rosellini
Session: Poster Display