Abstract 172P
Background
PLCE1 has been identified as a susceptibility gene for ESCC. However, the precise involvement of PLCE1 in glycolysis and its impact on anti-tumor immunity remain elusive.
Methods
We conducted an analysis of DEG) in ESCC cell lines following the silencing of PLCE1 using Affymetrix GeneChip technology. We employed IP-MS to identify molecules interacting with PLCE1, which are also associated with glycolytic processes. The mechanisms were further probed through a combination of IP assays, in vivo tumor growth experiments, and ubiquitination assays. To study the role of PLCE1 in glycolysis and its impact on anti-tumor immunity, we established an ESCC-induced model in C57BL/6 mice with the PLCE1-/- genotype, utilizing the carcinogen 4NQO.
Results
Bioinformatics analysis revealed that DEGs were significantly enriched in cell metabolism, particularly the glycolysis pathway. Knockdown of PLCE1 led to the suppression of glycolysis in ESCC cell lines through the regulation of ENO1 expression, a key enzyme in glycolysis. This effect was observed both in vitro and in vivo. Additionally, we have elucidated a novel pathway in which PLCE1 interacted with CDK2 and ENO1 to enhance the phosphorylation and stability of ENO1. Phosphorylation of ENO1 effectively prevented its ubiquitination and proteasome-mediated degradation, which was orchestrated by FBXW7-a recognized E3 ubiquitin ligase. In human ESCC tissues, we observed an increase in the population of CD8+ T cells in close proximity to PLCE1+ENO1+ tumor cells. A heightened accumulation of CD8+ PD1+ T cells was noted around these PLCE1+ENO1+ tumor cells. In an ESCC-induced mice model, a more pronounced infiltration of both CD4+ T cells and CD8+ T cells was observed in the PLCE1-/- genotype. Notably, T cells within the PLCE1-/- genotype exhibited heightened cytokine production and lower PD1 expression, an effect that was further potentiated by the ENO1 inhibitor.
Conclusions
Our study demonstrates that PLCE1 has the capacity to interact with CDK2 and ENO1, thereby counteracting FBXW7-mediated ubiquitination of ENO1. This intricate mechanism leads to an augmentation of glycolysis in ESCC and fosters an immune-suppressive tumor microenvironment.
Legal entity responsible for the study
The authors.
Funding
Natural Science Foundation of China.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
190P - Immune-related roles of B7H3 in glioblastoma
Presenter: Arnaud Simonet
Session: Poster Display
191P - Senolytic treatment remodels glioblastoma microenvironment
Presenter: Alexa Saliou
Session: Poster Display
192P - Analysis of Tumor-Associated Macrophages and Tumor-infiltrating Lymphocytes within the Tumor Microenvironment of Primary Tumors and Matched Brain Metastases
Presenter: Markus Kleinberger
Session: Poster Display
193P - Engagement of sialylated glycans with Siglec receptors on suppressive myeloid cells inhibit anti-cancer immunity via CCL2
Presenter: Ronja Wieboldt
Session: Poster Display
194P - Achieving Reproducible Maturation Staging of Tertiary Lymphoid Structures: from Imaging Mass Cytometry Data to Pathology Applications
Presenter: Marion Le Rochais
Session: Poster Display
195P - IMMUcan - Toward a better understanding of the tumor microenvironment to inform precision oncology approaches.
Presenter: Marie Morfouace
Session: Poster Display
196P - Local glycan engineering induces systemic antitumor immune reactions via antigen cross-presentation
Presenter: Natalia Rodrigues Mantuano
Session: Poster Display
197P - Computational pathology pipeline enables quantification of intratumor heterogeneity and tumor-infiltrating lymphocyte score
Presenter: Daniel Tiezzi
Session: Poster Display
198P - Polarization of tumor-associated macrophages enhanced by 2-HP-_-cyclodextrin modified PLGA nanoparticles
Presenter: HAO YUAN
Session: Poster Display
199P - Scalable multiplexed image analysis across cancer types as part of the IMMUcan consortium
Presenter: Nils Eling
Session: Poster Display