Abstract 172P
Background
PLCE1 has been identified as a susceptibility gene for ESCC. However, the precise involvement of PLCE1 in glycolysis and its impact on anti-tumor immunity remain elusive.
Methods
We conducted an analysis of DEG) in ESCC cell lines following the silencing of PLCE1 using Affymetrix GeneChip technology. We employed IP-MS to identify molecules interacting with PLCE1, which are also associated with glycolytic processes. The mechanisms were further probed through a combination of IP assays, in vivo tumor growth experiments, and ubiquitination assays. To study the role of PLCE1 in glycolysis and its impact on anti-tumor immunity, we established an ESCC-induced model in C57BL/6 mice with the PLCE1-/- genotype, utilizing the carcinogen 4NQO.
Results
Bioinformatics analysis revealed that DEGs were significantly enriched in cell metabolism, particularly the glycolysis pathway. Knockdown of PLCE1 led to the suppression of glycolysis in ESCC cell lines through the regulation of ENO1 expression, a key enzyme in glycolysis. This effect was observed both in vitro and in vivo. Additionally, we have elucidated a novel pathway in which PLCE1 interacted with CDK2 and ENO1 to enhance the phosphorylation and stability of ENO1. Phosphorylation of ENO1 effectively prevented its ubiquitination and proteasome-mediated degradation, which was orchestrated by FBXW7-a recognized E3 ubiquitin ligase. In human ESCC tissues, we observed an increase in the population of CD8+ T cells in close proximity to PLCE1+ENO1+ tumor cells. A heightened accumulation of CD8+ PD1+ T cells was noted around these PLCE1+ENO1+ tumor cells. In an ESCC-induced mice model, a more pronounced infiltration of both CD4+ T cells and CD8+ T cells was observed in the PLCE1-/- genotype. Notably, T cells within the PLCE1-/- genotype exhibited heightened cytokine production and lower PD1 expression, an effect that was further potentiated by the ENO1 inhibitor.
Conclusions
Our study demonstrates that PLCE1 has the capacity to interact with CDK2 and ENO1, thereby counteracting FBXW7-mediated ubiquitination of ENO1. This intricate mechanism leads to an augmentation of glycolysis in ESCC and fosters an immune-suppressive tumor microenvironment.
Legal entity responsible for the study
The authors.
Funding
Natural Science Foundation of China.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
90P - HAIC plus sintilimab and bevacizumab biosimilar as treatment for patients with advanced hepatocellular carcinoma (HCC): a phase II trial
Presenter: HAIBIN ZHANG
Session: Poster Display
91P - A real-world study of tislelizumab (Anti-PD-1) plus tyrosine kinase inhibitors for intermediate or advanced hepatocellular carcinoma
Presenter: Wei zhang
Session: Poster Display
92P - TAE-HAIC plus lenvatinib and PD-1 inhibitors versus TAE-HAIC plus atezolizumab and bevacizumab for unresectable hepatocellular carcinoma: A propensity score matching study
Presenter: hongjie Cai
Session: Poster Display
93P - The survival impact of the addition of durvalumab to cisplatin/gemcitabine in advanced biliary tract cancer: a real-world, retrospective, multicentric study.
Presenter: Margherita Rimini
Session: Poster Display
94P - First-line chemotherapy plus immunotherapy versus chemotherapy alone for advanced gallbladder carcinoma
Presenter: Qin-qin Liu
Session: Poster Display
95P - A single-arm, multicenter phase ? trial evaluating TQB2450 plus anlotinib combined with paclitaxel and cisplatin in first-line treatment of advanced esophageal squamous cell carcinoma (ESCC)
Presenter: Junsheng Wang
Session: Poster Display
97P - ICI for patients with MSS metastatic colorectal cancer
Presenter: Zayana Sangadzhieva
Session: Poster Display
Resources:
Abstract
99P - Efficacy and safety of toripalimab plus metronomic chemotherapy in HER2 negative metastatic breast cancer
Presenter: Hongnan Mo
Session: Poster Display