Abstract 58P
Background
T-cell receptor-engineered T cells (TCR-Ts) have achieved encouraging success in anticancer clinical trials. The antigenic targets, however, were primarily focused on a few cancer/testis antigens (CTAs) which are not widely expressed in common solid cancers; the tested T-cell receptors (TCRs) were frequently from tumor-infiltrating lymphocytes of old patients and were not assured to have higher avidity. Here, we propose the isolation of high-avidity TCRs against CTAs that are frequently expressed in common solid cancers.
Methods
CT83 protein, which is frequently expressed in common solid cancers, was as a model antigen for screening of its specific TCR. The predicted CT83 epitopes with binding to HLA-I molecules, popular in the Chinese population, were integrated into three synthetic long peptides. CT83 reactive CD8+ T cells were stimulated with peptide-loaded dendritic cells (DCs) and sorted using the CD137 biomarker for single-cell sequencing to obtain the paired TCRαβ sequence.
Results
CT83 reactive T cells from young healthy donors (YHDs) were generated by repeated stimulation with DCs and peptides. The single-cell TCR sequencing results of reactive T cells indicated that a single TCR clonotype dominated the paired TCRs. T cells engineered with this dominant TCR led to HLA-A*11:01-restricted recognition of the CT8314-22 epitope, with higher avidity. Functional assays showed powerful cytotoxicity in vitro against the targets of several CT83-positive solid cancer cell lines. Furthermore, TCR-Ts showed therapeutic efficacy in three xenograft solid tumor models. The meta-analysis of gene expression of 92 CTAs indicated that most CTAs did not or at low levels in the thymus, which suggested that those CTAs may experience incomplete thymic central tolerance.
Conclusions
High-avidity TCR against CT83 could be isolated from YHDs and efficiently mediate regression of well-established xenograft common solid tumors. The high-avidity TCR repertoire in the peripheral blood of some donors for CT83 and other CTAs provides the basis for the efficient isolation of high-avidity TCRs to target numerous solid cancers.
Legal entity responsible for the study
The author.
Funding
National Key Research & Development Projects of China.
Disclosure
The author has declared no conflicts of interest.
Resources from the same session
190P - Immune-related roles of B7H3 in glioblastoma
Presenter: Arnaud Simonet
Session: Poster Display
191P - Senolytic treatment remodels glioblastoma microenvironment
Presenter: Alexa Saliou
Session: Poster Display
192P - Analysis of Tumor-Associated Macrophages and Tumor-infiltrating Lymphocytes within the Tumor Microenvironment of Primary Tumors and Matched Brain Metastases
Presenter: Markus Kleinberger
Session: Poster Display
193P - Engagement of sialylated glycans with Siglec receptors on suppressive myeloid cells inhibit anti-cancer immunity via CCL2
Presenter: Ronja Wieboldt
Session: Poster Display
194P - Achieving Reproducible Maturation Staging of Tertiary Lymphoid Structures: from Imaging Mass Cytometry Data to Pathology Applications
Presenter: Marion Le Rochais
Session: Poster Display
195P - IMMUcan - Toward a better understanding of the tumor microenvironment to inform precision oncology approaches.
Presenter: Marie Morfouace
Session: Poster Display
196P - Local glycan engineering induces systemic antitumor immune reactions via antigen cross-presentation
Presenter: Natalia Rodrigues Mantuano
Session: Poster Display
197P - Computational pathology pipeline enables quantification of intratumor heterogeneity and tumor-infiltrating lymphocyte score
Presenter: Daniel Tiezzi
Session: Poster Display
198P - Polarization of tumor-associated macrophages enhanced by 2-HP-_-cyclodextrin modified PLGA nanoparticles
Presenter: HAO YUAN
Session: Poster Display
199P - Scalable multiplexed image analysis across cancer types as part of the IMMUcan consortium
Presenter: Nils Eling
Session: Poster Display