Abstract 38P
Background
Regulatory T cells (Treg) play a crucial role as prognostic factors and intervention targets for isocitrate dehydrogenase (IDH)-wild type (wt) glioblastoma (GBM). The study aimed to construct a model predicting the Treg infiltration in IDH-wt GBM patients using pathomics techniques and explore related biological processes.
Methods
Flow cytometry was used to detect the proportion of Treg in orthotopic mouse glioblastoma brain tissue. Clinical data of IDH-wt GBM patients from the TCGA database were analyzed retrospectively. Features were extracted from HE-stained biopsy sections using the Pyradiomics package. The pathomics model was constructed using the Gradient Boosting Machine algorithm after performing feature selection with mRMR and Relief algorithms. Cox proportional hazard regression analysis was employed to access the association between pathomics score (PS) and overall survival (OS). Transcriptomic data were analyzed through GSEA set enrichment, differential gene expression, and correlation analyses.
Results
The study established a pathomics model with 3 pathomics features that effectively predicted Treg infiltration (Training set: AUC=0.807; Validation set: AUC=0.735). PS positively correlated with high Treg expression. Survival analysis indicated that patients with high PS had significantly lower OS than the low PS group (median survival time: 12.0 vs 14.4 months; p=0.009). Multivariate COX analysis revealed that high PS expression independently served as a prognostic risk factor for IDH-wt GBM patients (HR, 2.16; 95% CI, 1.269-3.677; p=0.005). Subgroup analysis showed that high PS was a risk factor for OS in patients receiving chemotherapy (HR, 2.232; 95% CI, 1.309-3.905; p=0.003) or radiotherapy (HR, 1.882; 95% CI, 1.161-3.049; p=0.01).GSEA enrichment analysis revealed significant associations of PS with the NOTCH, IL-6/JAK/STAT3 signaling pathways. High PS significantly correlated with elevated RAD50 expression.
Conclusions
The developed pathomics model, based on machine learning algorithms, can noninvasively predict Treg infiltration and prognosis in IDH-wt GBM patients. The biological processes related to the model may involve RAD50 and pathways, including NOTCH, IL-6/JAK/STAT3.
Legal entity responsible for the study
The authors.
Funding
The Joint Funds for the Innovation of Science and Technology, Fujian Province (No.2021Y9301).
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
47TiP - A real-world study of multiparametric prediction of the efficacy of immune checkpoint inhibitors in combination with chemotherapy for advanced non-small cell lung cancer
Presenter: Zihan Zhou
Session: Poster Display
51P - Phase 1B (Ph1b), MESOVAX clinical trial of pembrolizumab (P) and dendritic cell vaccine (DCvax) in advanced pleural and peritoneal mesothelioma (M): preliminary results
Presenter: Laura Ridolfi
Session: Poster Display
52P - The dependence of TKI-resistant lung cancer cells on EGFR increases sensitivity to EGFR-CAR NK.
Presenter: Sumei Chen
Session: Poster Display
53P - Integrin-_v_6 targeted CAR T-cells in an immunocompetent orthotopic model of pancreatic cancer
Presenter: Nicholas Brown
Session: Poster Display
55P - DPP9 promotes renal cancer PD-L1 expression through SHMT2-BRISC complex
Presenter: wei zhang
Session: Poster Display
56P - FOXM1D in T cells promotes the transcription of PD-1 by interacting with HCFC1 and regulating the killing of renal cancer cells
Presenter: yue wang
Session: Poster Display
57P - Anatomical location of metastasis and composition of the final infusion product in metastatic melanoma (MM) patients treated with tumor-infiltrating lymphocytes (TIL)
Presenter: Joachim Stoltenborg Granhøj
Session: Poster Display
58P - Natural high-avidity T-cell receptor efficiently mediates regression of cancer/testis antigen 83 positive common solid cancers
Presenter: Liangping Li
Session: Poster Display
59P - Revolutionizing cell therapy testing by co-culturing 3D patient derived cancer models and circulating immune cells on Organ-on-chip platform
Presenter: silvia Scaglione
Session: Poster Display
60P - Adaptive NK cells as a therapeutic option for childhood leukaemia
Presenter: Zoya Eskandarian
Session: Poster Display