Abstract 38P
Background
Regulatory T cells (Treg) play a crucial role as prognostic factors and intervention targets for isocitrate dehydrogenase (IDH)-wild type (wt) glioblastoma (GBM). The study aimed to construct a model predicting the Treg infiltration in IDH-wt GBM patients using pathomics techniques and explore related biological processes.
Methods
Flow cytometry was used to detect the proportion of Treg in orthotopic mouse glioblastoma brain tissue. Clinical data of IDH-wt GBM patients from the TCGA database were analyzed retrospectively. Features were extracted from HE-stained biopsy sections using the Pyradiomics package. The pathomics model was constructed using the Gradient Boosting Machine algorithm after performing feature selection with mRMR and Relief algorithms. Cox proportional hazard regression analysis was employed to access the association between pathomics score (PS) and overall survival (OS). Transcriptomic data were analyzed through GSEA set enrichment, differential gene expression, and correlation analyses.
Results
The study established a pathomics model with 3 pathomics features that effectively predicted Treg infiltration (Training set: AUC=0.807; Validation set: AUC=0.735). PS positively correlated with high Treg expression. Survival analysis indicated that patients with high PS had significantly lower OS than the low PS group (median survival time: 12.0 vs 14.4 months; p=0.009). Multivariate COX analysis revealed that high PS expression independently served as a prognostic risk factor for IDH-wt GBM patients (HR, 2.16; 95% CI, 1.269-3.677; p=0.005). Subgroup analysis showed that high PS was a risk factor for OS in patients receiving chemotherapy (HR, 2.232; 95% CI, 1.309-3.905; p=0.003) or radiotherapy (HR, 1.882; 95% CI, 1.161-3.049; p=0.01).GSEA enrichment analysis revealed significant associations of PS with the NOTCH, IL-6/JAK/STAT3 signaling pathways. High PS significantly correlated with elevated RAD50 expression.
Conclusions
The developed pathomics model, based on machine learning algorithms, can noninvasively predict Treg infiltration and prognosis in IDH-wt GBM patients. The biological processes related to the model may involve RAD50 and pathways, including NOTCH, IL-6/JAK/STAT3.
Legal entity responsible for the study
The authors.
Funding
The Joint Funds for the Innovation of Science and Technology, Fujian Province (No.2021Y9301).
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
200P - A novel multi-organ on chip model for metastatic tumor biology understanding
Presenter: Elisabetta Palama
Session: Poster Display
201P - Role of aerobic exercise training on the mitochondrial metabolism and effector function of CD8+ tumor-infiltrating lymphocytes
Presenter: Janaina Vieira
Session: Poster Display
202P - Discovery of immunological cellular neighborhoods from protein markers in spatial tumor data
Presenter: Marcin Mozejko
Session: Poster Display
203P - Identification of High Confidence Candidate Markers for Macrophage Infiltrating Tumor Microenvironment through Single Cell Genomic Atlases
Presenter: Constance Ciaudo Beyer
Session: Poster Display
204P - Effect of STAT6 Inhibition as a Novel Strategy for Promoting the Induction of Potent and Stable Regulatory T Cells for Use in Colitis Therapy
Presenter: SONIA LEON-CABRERA
Session: Poster Display