Abstract 154P
Background
Numerous studies have consistently highlighted CLDN4 as a viable candidate for targeted therapy across various ovarian tumor types. Specifically, the C-terminal region of Clostridium perfringens enterotoxin (CPE) has demonstrated the ability to establish a stable complex with CLDN4. In our investigation, we harnessed computer-aided drug design (CADD) technology to craft peptides characterized by a specific and robust affinity for CLDN4. These peptides hold the potential to facilitate the development of self-assembling anti-tumor Peptide-Drug Conjugates (PDCs).
Methods
We employed virtual screening techniques, including alanine mutation, saturation mutation, and multi-point mutation, in conjunction with DS software to screen peptide sequences. To validate the binding capacity of the selected peptides with the CLDN4 protein, we conducted Surface Plasmon Resonance (SPR) and immunofluorescence colocalization experiments. Subsequently, we prepared Peptide-Drug Conjugates (PDCs), taking advantage of their inherent hydrophilic and hydrophobic properties, which promote their spontaneous assembly into nanofibrous structures. The anti-tumor efficacy of these formulations was rigorously assessed through both in vivo and in vitro experiments.
Results
SPR analysis revealed a noteworthy binding affinity between the targeted peptide and the CLDN4 protein, as evidenced by a Kd value of 5.343nM. Immunofluorescence co-localization experiments unequivocally demonstrated the co-localization of the targeted peptide with CLDN4. Furthermore, The PDC self-assembly group exhibited superior cytotoxicity compared to both the PDC non-self-assembly group and the camptothecin group.
Conclusions
In this study, we harnessed Computer-Aided Drug Design (CADD) technology to effectively engineer a targeting peptide characterized by a strong affinity for the CLDN4 protein. This peptide was subsequently employed in the self-assembly of Protein-Drug Conjugates (PDCs). The therapeutic potential of these PDCs for ovarian cancer was robustly substantiated through a comprehensive array of in vitro and in vivo experiments, unequivocally affirming their promise as a viable treatment option.
Legal entity responsible for the study
The authors.
Funding
National Natural Science Foundation of China.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
90P - HAIC plus sintilimab and bevacizumab biosimilar as treatment for patients with advanced hepatocellular carcinoma (HCC): a phase II trial
Presenter: HAIBIN ZHANG
Session: Poster Display
91P - A real-world study of tislelizumab (Anti-PD-1) plus tyrosine kinase inhibitors for intermediate or advanced hepatocellular carcinoma
Presenter: Wei zhang
Session: Poster Display
92P - TAE-HAIC plus lenvatinib and PD-1 inhibitors versus TAE-HAIC plus atezolizumab and bevacizumab for unresectable hepatocellular carcinoma: A propensity score matching study
Presenter: hongjie Cai
Session: Poster Display
93P - The survival impact of the addition of durvalumab to cisplatin/gemcitabine in advanced biliary tract cancer: a real-world, retrospective, multicentric study.
Presenter: Margherita Rimini
Session: Poster Display
94P - First-line chemotherapy plus immunotherapy versus chemotherapy alone for advanced gallbladder carcinoma
Presenter: Qin-qin Liu
Session: Poster Display
95P - A single-arm, multicenter phase ? trial evaluating TQB2450 plus anlotinib combined with paclitaxel and cisplatin in first-line treatment of advanced esophageal squamous cell carcinoma (ESCC)
Presenter: Junsheng Wang
Session: Poster Display
97P - ICI for patients with MSS metastatic colorectal cancer
Presenter: Zayana Sangadzhieva
Session: Poster Display
Resources:
Abstract
99P - Efficacy and safety of toripalimab plus metronomic chemotherapy in HER2 negative metastatic breast cancer
Presenter: Hongnan Mo
Session: Poster Display