Abstract 197P
Background
Tumor mutation burden, intratumor heterogeneity and the cancer related immune infiltrate are associated with response to target and immune therapies in several cancer types. The aim of this study is to establish a computational pathology (CPath) pipeline for investigating useful histopathological features in hematoxylin and eosin (H&E) whole slide images (WSIs). The pipeline allows for the segmentation and classification of nuclei. As an application, a machine learning approach is used to quantify intratumor heterogeneity (ITH) and tumor-infiltrating lymphocyte (TIL) scores.
Methods
We randomly selected 178 invasive ductal carcinomas WSIs from the TCGA database to process. Image annotation and nuclei detection were performed on QuPath by a pathologist using StarDist and used to train a SVM-based nuclei type classifier. The classifier was trained to distinguish between tumor, lymphocyte, and stroma. A total of 113.211 nuclei images were extracted using OpenSlide and used to train an autoencoder for dimensionality reduction. The variability of the WSIs was computed by applying a statistical measure of dispersion to the feature vectors. The TIL score was computed as the average minimum distance between a tumor cell and its nearest lymphocyte neighbor. We used the mutation burden, the ITH, PAM50 classification, nuclear and histological grades data from [https://doi.org/10.1038/nm.3984] to validate our ITH score. The percentage of infiltrating lymphocytes inferred by the quanTIseq pipeline based on RNAseq data was used to validate the SVM model.
Results
The nuclei classifier achieved 88% accuracy on the test set and the 96%/92% sensitivity to tumor/lymphocyte on a validation dataset. The mean squared error of the autoencoder was 0.0004 in the test set. The ITH score was associated with the clonal number of a tumor (x2 = 8.8, p= 0.03). Finally, we observed a positive correlation between the TIL/tumor ratio inferred by the CPath pipeline and the total number of T lymphocytes inferred by quanTIseq (Spearman= 0. 34, p < 0.0001).
Conclusions
We explored a CPath pipeline for detecting and classifying nuclei. The pipeline was used to compute ITH and TIL scores which correlated with validation data. Thus, validating our pipeline.
Legal entity responsible for the study
D.G. Tiezzi.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
146P - A Novel Allosteric Oral Immunotherapy Small Molecule Modulates Adenosine 2A Receptor Signaling and Restores Anti-Tumor Immune Responses
Presenter: David Pejoski
Session: Poster Display
147P - Pre-clinical evaluation and safety profile of the highly selective anti-VISTA antibody K01401-020
Presenter: Geneviève Gueguen Dorbes
Session: Poster Display
148P - HexaBody-OX40, a novel Fc_ receptor crosslinking-independent OX40-targeting antibody, exhibits agonistic activity in vitro and antitumor activity in vivo
Presenter: Kristel Kemper
Session: Poster Display
149P - HLA/SIRPa bispecifics-A novel multitarget therapeutic strategy to induce potent anti-tumor immune responses
Presenter: anahita rafiei
Session: Poster Display
150P - Chemotherapy in combination with Toll-like receptor agonism promoted antitumor immune response in triple negative breast cancer
Presenter: Eunice Dotse
Session: Poster Display
151P - Tumor organoid-derived TIL therapy for colorectal cancer
Presenter: Marc Leushacke
Session: Poster Display
152P - Discovery of best-in-class dual-acting A2AR/A2BR antagonists that are functional in high adenosine environment
Presenter: Nainesh Katagihallimath
Session: Poster Display
153P - Discovery of a Novel, Dual CD73 and PD-1 Targeting Multispecific Drug Fc-Conjugate (DFC) for the Treatment of Cancer
Presenter: James Levin
Session: Poster Display
154P - Computer-aided drug design based on CLDN4 ligand and its biological evaluation in ovarian cancer
Presenter: Yi Xu
Session: Poster Display
155P - A Phase 1 Study Exploring the Safety and Tolerability of the Small-Molecule PD-L1 Inhibitor INCB099280 in Select Advanced Solid Tumors
Presenter: Hans Prenen
Session: Poster Display