Abstract 197P
Background
Tumor mutation burden, intratumor heterogeneity and the cancer related immune infiltrate are associated with response to target and immune therapies in several cancer types. The aim of this study is to establish a computational pathology (CPath) pipeline for investigating useful histopathological features in hematoxylin and eosin (H&E) whole slide images (WSIs). The pipeline allows for the segmentation and classification of nuclei. As an application, a machine learning approach is used to quantify intratumor heterogeneity (ITH) and tumor-infiltrating lymphocyte (TIL) scores.
Methods
We randomly selected 178 invasive ductal carcinomas WSIs from the TCGA database to process. Image annotation and nuclei detection were performed on QuPath by a pathologist using StarDist and used to train a SVM-based nuclei type classifier. The classifier was trained to distinguish between tumor, lymphocyte, and stroma. A total of 113.211 nuclei images were extracted using OpenSlide and used to train an autoencoder for dimensionality reduction. The variability of the WSIs was computed by applying a statistical measure of dispersion to the feature vectors. The TIL score was computed as the average minimum distance between a tumor cell and its nearest lymphocyte neighbor. We used the mutation burden, the ITH, PAM50 classification, nuclear and histological grades data from [https://doi.org/10.1038/nm.3984] to validate our ITH score. The percentage of infiltrating lymphocytes inferred by the quanTIseq pipeline based on RNAseq data was used to validate the SVM model.
Results
The nuclei classifier achieved 88% accuracy on the test set and the 96%/92% sensitivity to tumor/lymphocyte on a validation dataset. The mean squared error of the autoencoder was 0.0004 in the test set. The ITH score was associated with the clonal number of a tumor (x2 = 8.8, p= 0.03). Finally, we observed a positive correlation between the TIL/tumor ratio inferred by the CPath pipeline and the total number of T lymphocytes inferred by quanTIseq (Spearman= 0. 34, p < 0.0001).
Conclusions
We explored a CPath pipeline for detecting and classifying nuclei. The pipeline was used to compute ITH and TIL scores which correlated with validation data. Thus, validating our pipeline.
Legal entity responsible for the study
D.G. Tiezzi.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
126P - Evaluation of Myeloid Targeting Agents, PY159 and PY314, in Two Dose Expansion Phase 1b Trials in Platinum-Resistant Ovarian Cancer
Presenter: Oladapo Yeku
Session: Poster Display
116TiP - Randomized, open-label, phase II study of botensilimab (BOT) alone and in combination with balstilimab (BAL) versus standard-of-care in patients with refractory metastatic colorectal cancer
Presenter: Eric Van Cutsem
Session: Poster Display
127P - REGN5668 (MUC16xCD28 bispecific antibody) with cemiplimab (anti-PD-1 antibody) in recurrent ovarian cancer: Phase 1 dose-escalation study
Presenter: Ira Winer
Session: Poster Display
128P - A phase I dose escalation and expansion trial of LYT-200, a Galectin-9 antibody +/- tislelizumab
Presenter: Gerald Falchook
Session: Poster Display
129P - Naxitamab efficacy in patients with refractory/relapsed high-risk neuroblastoma and bone metastases as assessed by Curie score
Presenter: Brian Kushner
Session: Poster Display
131P - Safety and clinical efficacy of Roginolisib (IOA-244), the first oral allosteric modulator of phosphoinositide 3-kinase inhibitor delta (PI3K_)
Presenter: Anna Di Giacomo
Session: Poster Display
132P - A phase I clinical trial of QLS31905 in advanced solid tumors
Presenter: Yakun Wang
Session: Poster Display
133P - Phase 1/2 study of XTX101, a masked, tumor-activated Fc-enhanced anti-CTLA-4, in patients with advanced solid tumors
Presenter: Diwakar Davar
Session: Poster Display
134P - A Phase 1 Study Exploring the Safety and Tolerability of the Small Molecule PD-L1 Inhibitor INCB099318 in Select Advanced Solid Tumors
Presenter: David Pinato
Session: Poster Display
135P - Isunakinra as Monotherapy and Combined with Nivolumab for Treatment Resistant Advanced Solid Tumours: Exploratory Effect Data, Tolerability, and Pharmacokinetics from a Dose Escalation Trial
Presenter: Carlos Becerra
Session: Poster Display