Abstract 145P
Background
Macrophages exert their functions mainly through SIRPa receptor, which interacts with CD47 on cellular targets. As many cancer cells overexpress CD47 to evade immune surveillance, blocking SIRPa-CD47 interaction represents a promising approach to control tumor progression. The clinical progress of anti-CD47 antibodies were hindered by either side effects or lacking appreciable efficacy. To overcome this dilemma, we engineered a SIRPa-fusion protein that exhibits superior efficacy against multiple tumor types while maintaining good safety profiles.
Methods
Using structure-guided protein engineering, we selected a SIRPa mutant that exhibited marked phagocytic abilities against tumors while maintaining good safety features on normal cells. To assess the efficacy of this molecule, it was tested in multiple xenograft mouse models alongside competing biologics currently in clinical trials. We also performed quantitative RNA transcriptional analysis to evaluate the changes in gene expression inside tumor and in the tumor microenvironment.
Results
Comparing to other clinical candidates, HCB101 triggered strong phagocytic reactions against tumor cells but not red blood cells. We have analyzed 14 human tumor xenograft models, HCB101 consistently showed excellent efficacy against heme and solid tumors, with tumor growth inhibition index ranging from 60-100% at the dose of 0.5-10mg/kg over placebo. We also observed an increase in M1/M2 macrophage ratio after the treatment with HCB101, which correlated with the observed anti-tumor efficacy. Quantitative RNA transcriptional analysis indicated that HCB101 triggered drastic changes in gene expression comparing to other competing molecules. This suggested a unique MOA underlying HCB101’s superior efficacy. There was no apparent adverse reaction observed during the toxicology studies, indicating a good safety profile.
Conclusions
Comparing to relevant clinical candidates, HCB101 exhibits superior efficacy in 14 different CDX models of hemotological and solid tumors while maintaining good safety profiles. It is a highly effective biologic with robust efficacy, both as monotherapy and in combination. Clinical trial of HCB101 is now in progress.
Clinical trial identification
NCT05892718.
Legal entity responsible for the study
HanchorBio, Inc.
Funding
HanchorBio, Inc.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
181P - Tertiary lymphoid structures and B cells determine clinically relevant T cell phenotypes in ovarian cancer
Presenter: Jitka Palich Fucikova
Session: Poster Display
182P - Exploring Cross-Compartmental Tumor Cell Plasticity and Immunogenicity in Serous Ovarian Cancer
Presenter: Louisa Hell
Session: Poster Display
183P - Multi-omics Investigation Reveals Cancer-Associated Fibroblast-Secreted FGF7 as an Ovarian Cancer Progression Promoter through HIF-1_/EMT Modulation
Presenter: Songwei Feng
Session: Poster Display
184P - Elevated baseline circulating IL-8 is associated with increased expression of the IMmotion myeloid gene signature (GS) in metastatic clear cell renal cell carcinoma (mRCC) patients (pts) treated with nivolumab (nivo) within the NIVOREN GETUG-AFU 26 study.
Presenter: LUCIA CARRIL AJURIA
Session: Poster Display
185P - The Immunosuppressive Landscape of Leukemia Inhibitory Factor (LIF) in Clear Cell Renal Cell Carcinoma
Presenter: Yazan Al Zu’bi
Session: Poster Display
186P - Post-anti-PD1 tumor characterization of HPV-negative R/M SCCHN: an EORTC IMMUcan sub-project
Presenter: Athénaïs Van Der Elst
Session: Poster Display
187P - Local and systemic anti-tumor response during tumor development in an immune privileged site: the case of uveal melanoma
Presenter: Francesca Lucibello
Session: Poster Display
188P - Expression of the co-stimulatory checkpoint protein OX40L (TNFSF4) in the melanoma micro-environment
Presenter: Raya Leibowitz-Amit
Session: Poster Display
189P - The impact of immune microenvironment subopopulations on soft tissue sarcomas
Presenter: Shokhrukhbek Khujaev
Session: Poster Display