Abstract 47TiP
Background
Immune checkpoint inhibitors (ICIs) combined with chemotherapy has become the first-line treatment option for non-small cell lung cancer (NSCLC) patients without driver mutation genes. However, a large amount of clinical data has confirmed that only part of NSCLC patients can achieve durable clinical benefits, while the incidence of adverse reactions is high. So, there is still an urgent need for reliable biomarkers to construct models for accurate prediction and assessment of treatment outcomes. Recently, ctDNA and tumor mutation burden (TMB) have been proposed as biomarkers for predicting the outcome of immunotherapy, but no consensus has been reached on the cutoff value of TMB, ctDNA clearance threshold and optimal sampling time point. Therefore, this study aims to develop a prediction model for the efficacy of chemo-immunotherapy based on the clinical multiparameter data, and explore the ctDNA change threshold and the optimal time of collection with superior predictive value.
Trial Design
This study was a single-center, real-world study to collect an estimated 56 patients from the Department of Respiratory and Critical Care Medicine, Southeast University Zhongda Hospital, who were diagnosed with inoperable stage IIIB to IV NSCLC and treated with standard chemo-immunotherapy from August 2022 to January 2024. Blood samples at baseline, within 2 days before medication in the 2nd and 3rd treatment cycles, and the time of progression were collected respectively for genetic testing. At the same time, clinical data such as blood counts, blood biochemical indexes, lymphocyte subpopulations, etc. were recorded, and patients were subsequently followed up to record anti-tumor efficacy such as objective responds rate (ORR), progression-free survival (PFS), overall survival (OS), and the occurrence of adverse events. Patients were categorized into durable clinical benefit group (DCB group) and non-durable benefit group (NDB group) according to whether the PFS was more than 8 months, and the predictive model was proposed to be constructed using the support vector mechanism.
Clinical trial identification
NCT05725915.
Legal entity responsible for the study
The authors.
Funding
Beijing Red Clove Public Welfare Development Center.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
46P - Immunoprofiling of Peripheral Blood Cells as a Potential Predictor of Immune-Related Toxicity of PD-1 Inhibitors
Presenter: Jan Podhorec
Session: Poster Display
51P - Phase 1B (Ph1b), MESOVAX clinical trial of pembrolizumab (P) and dendritic cell vaccine (DCvax) in advanced pleural and peritoneal mesothelioma (M): preliminary results
Presenter: Laura Ridolfi
Session: Poster Display
52P - The dependence of TKI-resistant lung cancer cells on EGFR increases sensitivity to EGFR-CAR NK.
Presenter: Sumei Chen
Session: Poster Display
53P - Integrin-_v_6 targeted CAR T-cells in an immunocompetent orthotopic model of pancreatic cancer
Presenter: Nicholas Brown
Session: Poster Display
55P - DPP9 promotes renal cancer PD-L1 expression through SHMT2-BRISC complex
Presenter: wei zhang
Session: Poster Display
56P - FOXM1D in T cells promotes the transcription of PD-1 by interacting with HCFC1 and regulating the killing of renal cancer cells
Presenter: yue wang
Session: Poster Display
57P - Anatomical location of metastasis and composition of the final infusion product in metastatic melanoma (MM) patients treated with tumor-infiltrating lymphocytes (TIL)
Presenter: Joachim Stoltenborg Granhøj
Session: Poster Display
58P - Natural high-avidity T-cell receptor efficiently mediates regression of cancer/testis antigen 83 positive common solid cancers
Presenter: Liangping Li
Session: Poster Display
59P - Revolutionizing cell therapy testing by co-culturing 3D patient derived cancer models and circulating immune cells on Organ-on-chip platform
Presenter: silvia Scaglione
Session: Poster Display
60P - Adaptive NK cells as a therapeutic option for childhood leukaemia
Presenter: Zoya Eskandarian
Session: Poster Display