Abstract 47TiP
Background
Immune checkpoint inhibitors (ICIs) combined with chemotherapy has become the first-line treatment option for non-small cell lung cancer (NSCLC) patients without driver mutation genes. However, a large amount of clinical data has confirmed that only part of NSCLC patients can achieve durable clinical benefits, while the incidence of adverse reactions is high. So, there is still an urgent need for reliable biomarkers to construct models for accurate prediction and assessment of treatment outcomes. Recently, ctDNA and tumor mutation burden (TMB) have been proposed as biomarkers for predicting the outcome of immunotherapy, but no consensus has been reached on the cutoff value of TMB, ctDNA clearance threshold and optimal sampling time point. Therefore, this study aims to develop a prediction model for the efficacy of chemo-immunotherapy based on the clinical multiparameter data, and explore the ctDNA change threshold and the optimal time of collection with superior predictive value.
Trial Design
This study was a single-center, real-world study to collect an estimated 56 patients from the Department of Respiratory and Critical Care Medicine, Southeast University Zhongda Hospital, who were diagnosed with inoperable stage IIIB to IV NSCLC and treated with standard chemo-immunotherapy from August 2022 to January 2024. Blood samples at baseline, within 2 days before medication in the 2nd and 3rd treatment cycles, and the time of progression were collected respectively for genetic testing. At the same time, clinical data such as blood counts, blood biochemical indexes, lymphocyte subpopulations, etc. were recorded, and patients were subsequently followed up to record anti-tumor efficacy such as objective responds rate (ORR), progression-free survival (PFS), overall survival (OS), and the occurrence of adverse events. Patients were categorized into durable clinical benefit group (DCB group) and non-durable benefit group (NDB group) according to whether the PFS was more than 8 months, and the predictive model was proposed to be constructed using the support vector mechanism.
Clinical trial identification
NCT05725915.
Legal entity responsible for the study
The authors.
Funding
Beijing Red Clove Public Welfare Development Center.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
14P - Integrated modelling of T cell repertoires to identify clonotype signatures of ICI response
Presenter: Juan Luis Melero
Session: Poster Display
16P - Exosomal PD-L1 and lactate predict clinical outcomes of PD-1 blockade combined with chemotherapy in advanced-stage gastric and gastroesophageal junction adenocarcinoma
Presenter: Yongshun Chen
Session: Poster Display
17P - Spatial Characteristics Associated with the Chemo and Immuno-treatment Response of Gastric Cancer Revealed by Multi-omics Analysis
Presenter: Gang Che
Session: Poster Display
18P - Association of DNA methylation profiles with pathologic complete response in early triple negative breast cancer patients receiving neoadjuvant chemoimmunotherapy
Presenter: Angelika Starzer
Session: Poster Display
19P - The prognostic value of soluble CD73 in advanced triple-negative breast cancer: an exploratory analysis of the SYNERGY trial
Presenter: Denis Zoë
Session: Poster Display
21P - Mass cytometry reveals a population of exhausted CD8+ T cells associated with durvalumab/tremelimumab/vinorelbine efficacy in advanced cervical cancer (iMOVIE).
Presenter: Alexandre Bertucci
Session: Poster Display
22P - Predictive value of Tertiary Lymphoid Structure in patients with mismatch repair deficient advanced/ recurrent endometrial cancer treated with Dostarlimab.
Presenter: Maria Kfoury
Session: Poster Display
23P - Circulating immune cells and activity of immune checkpoint inhibitors in metastatic renal cell carcinoma
Presenter: Ronan Flippot
Session: Poster Display
24P - Chromosome 3p-related gene alterations (GA) as biomarkers for immunocombinations in metastatic renal cell carcinoma (mRCC): a hypothesis-generating analysis
Presenter: Matteo Rosellini
Session: Poster Display