Abstract 200P
Background
Understanding the complex biology of metastatic tumors is critical for advancing cancer biology research and improving therapeutic interventions. To address this challenge, we have developed a novel multi-organ-on-chip (Multi-OOC) platform designed to unravel the intricacies of breast to bone (B2B) metastatic tumor growth. This innovative platform integrates organ-specific tissue models fluidically interconnected to mimic the dynamic interactions between primary tumor and distant organ during metastasis. By replicating the physiological microenvironments of various target organs, our model provides a unique opportunity to investigate the entire metastatic cascade, from tumor cell dissemination, circulating tumor cells (CTCs) survival under flow and colonization. In order to support real-time monitoring of cellular infiltration and response to therapeutic agents in a multi-organ context optically transparent OOC device has been developed, compatible with the optical microscope observation.
Methods
A breast cancer cell laden hydrogel has been developed by using MDA-MB-231 cells with and without endothelial cells (HUVEC), forming the capillary network. A computational fluid dynamic simulation was done to set up the proper capillary velocity and induced shear stresses. In a second chamber, a bone tissue model was developed as metastasis target: different ratio of hydroxyapatite (HA) has been included in a polymeric matrix to introduce a bone like mineral phase. Tumor cell infiltration and CTC survival rate have been monitored using different fluid-dynamic conditions and HA content.
Results
A multicompartmental OOC has been developed and successfully validated. The 3D breast cancer model displayed long term (2 months) survival in vitro in dynamic conditions, and a cells cytoskeleton reorganization was highlighted. The CTCs survival was shown correlated to the shear stresses induced by the fluid flow into the Multi-OOC. Different levels of CTCs infiltration in the mineralized matrix hosted in the metastatic OOC chamber were observed.
Conclusions
This platform holds great promise for accelerating the development of targeted therapies and personalized treatment strategies, ultimately advancing our understanding of metastatic cancer biology.
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
M. Aiello, S. Scaglione: Financial Interests, Personal, Member of Board of Directors: React4life. All other authors have declared no conflicts of interest.
Resources from the same session
136P - Circadian rhythm positioned chronomodulated-SBRT with Cancer associated fibroblast elimination theranostic treatment to harmonize resistant TFG-Beta stromal microenvironment in conjunction with PDL-1 based immunotherapy in disseminated cancers-Concept randomised study.
Presenter: G Lohith
Session: Poster Display
137P - First-in-human results from a Phase I dose-escalation study of VSV-GP (BI 1831169) in patients with advanced solid tumors
Presenter: Stephane Champiat
Session: Poster Display
138P - Generation of frameshift mutated TGF_R2-specific T cells in healthy subjects following administration with cancer vaccine candidate FMPV-1/GM-CSF
Presenter: Else Inderberg
Session: Poster Display
139P - Safety and clinical activity of a novel anti-CCR8 antibody (LM-108) as a single agent or in combination with pembrolizumab in patients with advanced solid tumors: Results of phase 1 study
Presenter: Alexander Starodub
Session: Poster Display
140P - Eliciting mAbs targeting MHC-bound peptides with a novel antibody discovery platform
Presenter: Elli Sandberg
Session: Poster Display
141P - An IgE antibody targeting the melanoma-associated Chondroitin Sulfate Proteoglycan 4
Presenter: Lais Cristina Palhares
Session: Poster Display
142P - Identifying novel immunotherapy targets using machine learning and ex vivo validation
Presenter: Marcellus Augustine
Session: Poster Display
143P - Advancing Cancer Immunotherapy via HLA-G Pathway Modulation with UCB4594
Presenter: Ann WHITE
Session: Poster Display
144P - Discovery of CBO421, a first-in-class Drug Fc-Conjugate (DFC), targeting CD73 in Cancer
Presenter: Simon Döhrmann
Session: Poster Display
145P - An Engineered Ligand-Trap Biologic Targeting the CD47 Signaling Pathway for Cancer Treatment with Superb Efficacy and Safety Profiles
Presenter: ZONG SEAN JUO
Session: Poster Display