Abstract 134P
Background
NSCLC accounts for most lung cancers and has a poor 5-year survival. With an increasing number of systemic and targeted therapies, including immune checkpoint inhibitors (ICIs), it is becoming more important to develop predictive biomarkers to identify patient response to ICIs. Additionally, targeting cancer and stromal cell metabolism could be the key to overcoming immune checkpoint blockade (ICB) resistance.
Methods
Retrospective cohort of 28 nivolumab-treated NSCLC tissue cores (n = 28; 10/18 responders/non-responders) was profiled using a custom 44-plex immunofluorescence panel (incl. functional/metabolic markers) with the Phenocycler Fusion platform (Akoya Biosciences). We applied an unbiased spatial analytics and explainable AI pipeline, SpaceIQ, to capture emergent metabolic programs in spatial arrangements of unbiased cell types (microdomains, μD1 and μD2) predictive of ICI response. Predictive spatial networks implicated in known metabolic pathways are currently being verified by spatial transcriptomics.
Results
Non-responders had higher proportions of CD4 T cells with upregulated TCA cycle/downregulated glycolysis and pentose phosphate pathway (PPP). μD1 and μD2 were spatially anchored around tumor cells with upregulated TCA cycle and oxidative phosphorylation (OXPHOS) with additional NK cells and dendritic cells along with upregulated PPP in μD2. Each microdomain had distinct metabolic programs relating to catabolic (energy utilization) and anabolic (cellular biogenesis) pathways. μD1/μD2 were prognostic for overall survival (mean AUC = 0.86/0.82, +/-0.11), with median sensitivity (80%/80%) and specificity (66%/88%) for nivolumab-treated response.
Conclusions
The SpaceIQ platform infers distinct metabolic programs revealing spatially mediated roles for anabolic/catabolic pathways to predict immunotherapy response in NSCLC. Unbiased discrete cell typing allowed for functional characterization of tumor/stromal cells. Distinct spatial organization of metabolic activity encompassing glycolysis, TCA cycle, PPP, and OXPHOS may play a significant role in affecting clinical outcomes induced by ICI therapy.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
PredxBio, Inc.
Funding
PredxBio, Inc.
Disclosure
R. Yan, S. Quinn, B. Falkenstein, S.C. Chennubhotla, F. Pullara: Financial Interests, Personal, Full or part-time Employment: PredxBio. All other authors have declared no conflicts of interest.
Resources from the same session
122P - Practice patterns and treatment outcomes of molecular tumour board (MTB)-based personalized cancer therapies: A single-center experience
Presenter: Florian Moik
Session: Poster session 08
123P - Pan-cancer homologous recombination deficiency (HRD) evaluation in patients enrolled in a routine molecular screening program
Presenter: Paula Romero-Lozano
Session: Poster session 08
124P - Incidence of activating frameshift and nonsense mutations in clinically actionable oncogenes
Presenter: Sjors Kas
Session: Poster session 08
125P - Comparison of microarray and next-generation sequencing-based approaches for detection of homologous recombination deficiency
Presenter: Caleb Kidwell
Session: Poster session 08
126P - Genomic landscape and prognostic impact of HER2 low-expressing tumors
Presenter: Aditya Shreenivas
Session: Poster session 08
127P - Clinical utility of circulating tumor DNA (ctDNA) next generation sequencing (NGS) to inform treatment decisions for patients (pts) with advanced solid tumors
Presenter: Diego Gomez Puerto
Session: Poster session 08
128P - Whole blood transcriptomics identifies transcriptional patterns linked to outcomes in patients receiving immune checkpoint inhibitors
Presenter: Sara Hone Lopez
Session: Poster session 08
129P - Integrating large data to unveil vulnerabilities for patients with hot tumors resistant to checkpoint inhibition
Presenter: Anlin Li
Session: Poster session 08
130P - Ipilimumab plus nivolumab (Ipi+Nivo) in patients with tumors harboring high tumor mutational burden or load (TMB/TML-H): Results from the Drug Rediscovery Protocol (DRUP)
Presenter: Soemeya Haj Mohammad
Session: Poster session 08
131P - Systemic immune-inflammation index and overall survival with checkpoint inhibitors
Presenter: Oliver Kennedy
Session: Poster session 08