Abstract 1186P
Background
Early cancer screening using circulating tumor DNA (ctDNA) faces challenges due to low abundance and a high signal-to-noise ratio. We aimed to develop a robust screening model that overcomes these limitations.
Methods
Low-pass whole-genome bisulfite sequencing (Low pass-WGBS) was utilized with the high-efficiency WATCHMaker (7K0101-096) library preparation kit for the optimization of cell-free DNA (cfDNA) sample processing, with sample loss minimized and molecular conversion efficiency enhanced. Thirteen cancer-specific differentially methylated regions (DMRs), including those related to lung and liver cancers, were targeted in the analysis. The SmartCS-LPLLM model, a single-molecule multimodal early cancer screening model based on large language models, was developed. Cancer signals were precisely identified by this model through the analysis of cfDNA features, including methylation scoring, sequence length, terminal motif characteristics, and sequence linguistic features.
Results
Reanalysis of public data from BMC Medicine (CRA001537) demonstrated the SmartCS-LPLLM model's significant improvement in differentiating hepatocellular carcinoma (HCC) from non-HCC samples, with an increased AUC value of 0.967. In a blind test of 12 cfDNA samples, the model accurately classified all 5 liver cancer samples. Notably, the model has been enhanced to accurately identify ctDNA at a concentration as low as 0.05%. Furthermore, during the model's construction, it was observed that the highest accuracy was achieved when the DMR region was 120M, with the single-molecule read-level model achieving a 85% accuracy rate in distinguishing tumor from healthy reads.
Conclusions
The SmartCS-LPLLM model, integrating biological features like methylation and copy number variations (CNVs), provides a precise clinical strategy for early cancer screening. Its performance in blind tests confirms its robustness and suitability for identifying low-abundance ctDNA samples, indicating significant clinical relevance.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
825P - Ultra-sensitive cfDNA analysis for minimally invasive measurable residual disease detection and profiling in multiple myeloma
Presenter: Natalia Buenache
Session: Poster session 09
826P - Efficacy of non-doxorubicin based regimens in severely G6PD deficient patients with DLBCL
Presenter: Shruti Prem Sudha
Session: Poster session 09
827P - Comparison of efficacy and safety between glofitamab and real-world regimens among Chinese patients with 3L+ relapsed/refractory diffuse large B-cell lymphoma: An external control study
Presenter: Keshu Zhou
Session: Poster session 09
828P - Translocation 11;14 is not associated with adverse prognosis in the era of novel anti-myeloma therapeutics
Presenter: Ioannis Ntanasis-Stathopoulos
Session: Poster session 09
829P - Flumatinib combined with chemotherapy for newly diagnosed adult with Ph-positive acute lymphoblastic leukemia: A single-center, retrospective observational study
Presenter: HAN SHUYU
Session: Poster session 09
830P - Prognostic model of pediatric AML patients with RUNX1-RUNX1T1 fusion gene
Presenter: Yang Xun
Session: Poster session 09
Resources:
Abstract
831P - Impact of chronic kidney disease on disease outcomes in hospitalized multiple myeloma patients: A National inpatient sample study from 2016 to 2020
Presenter: Marco Bermudez
Session: Poster session 09
Resources:
Abstract
832P - CLOMB: A validated scoring model to predict the relapse in the central nervous system of pediatric acute B-cell lymphoblastic leukemia
Presenter: Jiacheng Li
Session: Poster session 09
Resources:
Abstract
833P - Latest results of GVM±R regimen for the salvage therapy of patients with relapsed or refractory aggressive non-Hodgkin's lymphoma
Presenter: Wei Liu
Session: Poster session 09
834P - Treatment of DLBCL in HIV patient: Still a dilemma
Presenter: Devashish Desai
Session: Poster session 09