Abstract 187P
Background
Determining the radiosensitivity of an individual patient is pivotal in formulating an effective treatment strategy. However, the challenge has been the lack of reliable and clinically relevant predictive models for assessing radiosensitivity. In this study, we introduce a novel cancer organoid-based model called OncoSensi (Organoid Growth-based Oncological Sensitivity Test), which aims to predict an individual's response to radiotherapy and evaluate the risk of recurrence in patients with pharyngeal and esophageal cancer.
Methods
Biopsy tissues from 18 esophageal cancer patients and 14 pharyngeal cancer patients were dissociated into single cells and cultured on pillar plates with extracellular matrix (ECM) to establish cancer organoids array for high throughput radiation screening. These organoids were subsequently exposed to radiation doses of 2, 4, and 8 Gy. Post-irradiation, viable organoids were stained with calcein AM to assess survival. The area under the curve (AUC) and growth rate were calculated from viability data to determine the radiation sensitivity of each patient's organoids. Additionally, the patient's cancer stage score was integrated with these two parameters to generate the OncoSensi model and radiosensitivity prediction index.
Results
When individual parameters, such as the patient's AUC (conventional method), were employed, the radiation sensitivity prediction model showed specificity and sensitivity ranging from 50% to 70%. However, the organoid growth-based Oncological Sensitivity Test (OncoSensi) notably improved specificity to over 80% and sensitivity to over 80% in patients with pharyngeal and esophageal cancer. Additionally, OncoSensi identified a radiation-resistant group with a recurrence rate of over 50% within one year, distinguishing it significantly from the radiosensitive group in both pharyngeal and esophageal cancer patients.
Conclusions
Hence, the proposed OncoSensi proves valuable in predicting radiation response and recurrence among patients before undergoing radiation therapy for pharyngeal and esophageal cancers. It holds promise for application in precision medical platforms.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
D.W. Lee.
Funding
Medical & Bio Decision.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
152P - Exploratory biomarker analysis of phase III ASTRUM-004 study: Serplulimab plus chemotherapy as first-line treatment for advanced squamous non-small-cell lung cancer
Presenter: Caicun Zhou
Session: Poster session 08
153P - 23ME-01473, an Fc-enhanced anti-ULBP6/2/5 antibody, restores anti-tumor NK cell function through NKG2D and FcgRIIIa activation
Presenter: Kim Gerrick
Session: Poster session 08
154P - Phase II study of nivolumab and relatlimab utilizing single cell analysis of circulating T cells reveals immune features associated with response to dual PD-1 and LAG-3 inhibition
Presenter: James Dollar
Session: Poster session 08
155P - The molecular basis of the lymphocyte stability index (LSI): A pan-cancer peripheral biomarker for survival post immune checkpoint blockade (ICB)
Presenter: Robert Watson
Session: Poster session 08
156P - Microbiota-related multiomics to assess the clinical relevance of antibiotics (ATB) in immunotherapy (ICI)
Presenter: Adele Bonato
Session: Poster session 08
157P - Soluble and EV-bound CD27 act as antagonistic biomarkers in patients with solid tumors undergoing immunotherapy
Presenter: Joao Gorgulho
Session: Poster session 08
158P - Patterns of immune-related adverse events in early-phase cancer immunotherapy trials
Presenter: Benjamin Fairfax
Session: Poster session 08
160P - Predicting immune-related adverse events using biomarkers in early-phase cancer immunotherapy trials
Presenter: Benjamin Fairfax
Session: Poster session 08
161P - Fibroblast activation protein (FAP)-CD40 (RO7300490) mediates intratumoral DC maturation and modulation of the tumor microenvironment
Presenter: Ignacio Melero
Session: Poster session 08