Abstract 27P
Background
Despite notable progress in cutaneous melanoma (CM) treatment with immune checkpoint inhibitors (ICI), resistance onset urges the need for innovative approaches. Melanin involvement in CM progression is significant, as hyperpigmentation correlates with therapy resistance, including resistance to ICI. Melanin serves a dual role, acting as a protective agent against light-induced damage by scavenging reactive oxygen species (ROS) but also as a photosensitizer/pro-oxidative agent depending on its type and intracellular redox state. The melanin ROS-scavenging activity is primarily attributed to its ability to chelate metal ions such as iron, which can induce melanogenesis itself due to its high ROS-generating activity. Experimental evidence suggests that miR-214 is involved in melanoma hyperpigmentation and therapy resistance. This study aims to elucidate the interplay among miR-214, ROS, and iron in hyperpigmented/resistant CM.
Methods
The pigmentation level of control and stably transfected miR-214 cells (miR-214+) was assessed in vitro via melanosomes and intracellular melanin quantification, and correlated with ROS and iron content. CM cell therapy response in vitro was evaluated by 2D/3D assays. Both conventional and innovative nanoparticle-based approaches were used to modulate melanogenesis and assess therapy response. miR-214 plasmatic levels of ICI-treated CM patients at the Careggi University Hospital in Florence were quantified using droplet digital PCR.
Results
miR-214+ melanoma cells showed hyperpigmentation related to a pro-oxidative state and a reduced Glutathione S-transferase Zeta 1 (GSTZ1) expression, an anti-oxidant protein also involved in the catabolism of the melanin precursors phenylalanine and tyrosine. miR-214+ hyperpigmented cells showed less responsiveness to chemo-, target, and radiotherapy in vitro than control, restored when miR-214 signalling and melanogenesis were inhibited. Higher levels of miR-214 were found in plasma samples of ICI-treated non-responder CM patients compared to responders.
Conclusions
miR-214 triggers hyperpigmented, resistant melanoma phenotypes. Understanding its molecular network will be crucial to finding new therapy targets for non-responsive CM patients.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
E. Andreucci.
Funding
Associazione Italiana per la Ricerca sul Cancro and Fondazione Guido Berlucchi.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
42P - Correlation of circulating tumor cells with cancer stage
Presenter: Ana Paz
Session: Poster session 07
43P - A redesigned cell atlas of colon cancers to better assess their cellular composition
Presenter: Marine Sroussi
Session: Poster session 07
76P - Improving access to whole genome sequencing for patients with cancer of unknown primary using formalin-fixed paraffin embedded tissues and cell-free DNA
Presenter: Richard Tothill
Session: Poster session 07
77P - Whole-exome mutation profiling of cfDNA from over 2000 samples in major cancer indications
Presenter: Eric Jia
Session: Poster session 07
78P - Real-world analysis of actionable gene fusions identified by NGS and correlation with IHC in 422 patients from the community
Presenter: Husain Hatim
Session: Poster session 07
79P - Comprehensive genomic profiling provides patients access to novel matched therapies in a diverse real-world cohort of advanced lung cancer patients
Presenter: Jyoti Patel
Session: Poster session 07
80P - Development of a next-generation sequencing diagnostics recommender tool in the framework of the molecular tumor board Freiburg
Presenter: Ralf Mertes
Session: Poster session 07
81P - FINPROVE: The Finnish national study to facilitate patient access to targeted anti-cancer drugs – Preliminary data after two years of enrollment
Presenter: Katriina Jalkanen
Session: Poster session 07
82P - Clinical and molecular characteristics of gynecologic cancer patients in FINPROVE: The national phase II drug repurposing trial in Finland
Presenter: Anniina Färkkilä
Session: Poster session 07
83P - Circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) in eary high risk breast cancer: The CITUCEL trial update
Presenter: Roberto Borea
Session: Poster session 07