Abstract 3P
Background
Recently, KRAS G12C inhibitors (KRAS G12Ci) have been approved for the treatment of advanced KRAS G12C-mutant NSCLC. However, the group of patients with KEAP1 and LKB1 co-mutations did not achieve the expected clinical benefit of KRASG12Ci monotherapy. The independent impact of these alterations and the molecular mechanisms contributing to resistance are poorly understood. In this work, we investigated the impact of these co-mutations in vitro/in vivo in response to KRAS G12Ci and characterized transcriptomic and metabolic profiles.
Methods
We established a murine model of KRAS G12C NSCLC using CRISPR/Cas9 gene editing to create knockouts of LKB1(393p KL) and LKB1/KEAP1 (393p KLK). Several human KRAS G12C- mutant NSCLCs were used to confirm our findings (H2030, HCC44). Sotorasib (AMG 510) was used as a KRAS G12C inhibitor. RNA-seq, Seahorse Mito Stress test, metabolome analysis and 13C metabolic flux analysis were conducted. For animal studies, 8-week-old female 129S2/SvPasCrl mice were used.
Results
KEAP1 mutation drives resistance to KRAS G12Ci in cell viability assay and syngeneic murine model. Despite differences in response to KRAS G12Ci in vitro/in vivo, the MAPK pathway in KL and KLK was inhibited at the same level. RNA seq results revealed the enrichment of multiple metabolic and oxidative stress transcriptional programs in KLK cells. To gain insights into metabolic reprogramming in cells with KEAP1 and LKB1 alterations, metabolome and uniformly 13C-labeled glucose tracer assay were performed. In KLK cells central carbon metabolism including glutamine metabolism was greatly changed. Moreover, we observed an increase in several intermediates of the tricarboxylic acid cycle. Hence, this metabolic reprogramming caused by KEAP1 mutation can provide a survival advantage to KLK cells.
Conclusions
Clinically known resistance to KRAS G12Ci in patients with KEAP1 mutation was proved in vitro/in vivo. The presence of co-mutations in LKB1 (without additional alterations in KEAP1) does not affect the resistance to KRAS G12Ci. KEAP1 mutation induces metabolic reprogramming to fulfil the increased needs for energy and anabolism.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Ministry of Education, Culture, Sports, Science and Technology.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
42P - Correlation of circulating tumor cells with cancer stage
Presenter: Ana Paz
Session: Poster session 07
43P - A redesigned cell atlas of colon cancers to better assess their cellular composition
Presenter: Marine Sroussi
Session: Poster session 07
76P - Improving access to whole genome sequencing for patients with cancer of unknown primary using formalin-fixed paraffin embedded tissues and cell-free DNA
Presenter: Richard Tothill
Session: Poster session 07
77P - Whole-exome mutation profiling of cfDNA from over 2000 samples in major cancer indications
Presenter: Eric Jia
Session: Poster session 07
78P - Real-world analysis of actionable gene fusions identified by NGS and correlation with IHC in 422 patients from the community
Presenter: Husain Hatim
Session: Poster session 07
79P - Comprehensive genomic profiling provides patients access to novel matched therapies in a diverse real-world cohort of advanced lung cancer patients
Presenter: Jyoti Patel
Session: Poster session 07
80P - Development of a next-generation sequencing diagnostics recommender tool in the framework of the molecular tumor board Freiburg
Presenter: Ralf Mertes
Session: Poster session 07
81P - FINPROVE: The Finnish national study to facilitate patient access to targeted anti-cancer drugs – Preliminary data after two years of enrollment
Presenter: Katriina Jalkanen
Session: Poster session 07
82P - Clinical and molecular characteristics of gynecologic cancer patients in FINPROVE: The national phase II drug repurposing trial in Finland
Presenter: Anniina Färkkilä
Session: Poster session 07
83P - Circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) in eary high risk breast cancer: The CITUCEL trial update
Presenter: Roberto Borea
Session: Poster session 07